Asymptotic Distribution of the Eigenvalues of the Lower Part of the Schrödinger Operator Spectrum¹

F. H. BROWNELL & C. W. CLARK

Communicated by E. Hille

1. Introduction. Let $V(\mathbf{x})$ be a given, real valued, measurable function over $\mathbf{x} \in E_n$, euclidean n-space. In the Hilbert space $L_2(E_n)$ of finitely square integrable complex functions with respect to Lebesgue measure μ_n over E_n , consider the symmetric Schrödinger operator \mathbf{H}_0 defined by

$$[\mathbf{H}_0 u](\mathbf{x}) = -\nabla^2 u(\mathbf{x}) + V(\mathbf{x})u(\mathbf{x})$$

for $u \in \mathfrak{D}_0$, where

$$\nabla^2 = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$$

is the Laplacian and where $\mathfrak{D}_0 \subseteq L_2(E_n)$ is the set of all complex valued functions u over E_n which possess continuous second partials everywhere, which have $V(\mathbf{x})$ $u(\mathbf{x})$ to be in $L_2(E_n)$, and such that u and all its partials of order ≤ 2 are $O([1+|\mathbf{x}|^m]\exp{(-\frac{1}{2}|\mathbf{x}|^2)})$ over $\mathbf{x} \in E_n$ for some $m \geq 0$ depending on u.

Let **H** be a suitable self-adjoint extension of \mathbf{H}_0 , as specified more precisely in what follows; let $\mathbf{E}(A)$ be the corresponding spectral measure; and let $N(\lambda)$ for real λ be the dimension of the $L_2(E_n)$ subspace $\mathbf{E}((-\infty, \lambda])$ $L_2(E_n)$. Thus if $N(\lambda)$ is finite, then $(-\infty, \lambda]$ contains only point spectra of **H** and $N(\lambda)$ is the number of these eigenvalues $\lambda' \leq \lambda$, repeated according to multiplicity.

Now consider the formula

$$(1.2) \quad N(\lambda) = \{1 + o(1)\} \left[(2\sqrt{\pi})^n \Gamma\left(\frac{n}{2} + 1\right) \right]^{-1} \int_{\{X \mid Y(X) \le \lambda\}} \left[\lambda - V(\mathbf{x})\right]^{n/2} d\mu_n(\mathbf{x}).$$

¹ This paper arose from the doctoral dissertation of the second author under the direction of the first at the University of Washington. Financial support was obtained from a National Science Foundation grant and also from the Office of Naval Research, and reproduction in whole or in part is permitted for any purpose of the United States Government.