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1. Introduction. Let V(x) be a given, real valued, measurable function
over x ¢ E,, euclidean n-space. In the HiLBERT space L,(E,) of finitely square
integrable complex functions with respect to LEBESGUE measure u, over E, ,
consider the symmetric SCHRODINGER operator H, defined by

(1.1) Hu)®) = —Vu) + V(xu)
for u € Dy , where

n 62

V2 = 3
i=1 0x;

is the Laplacian and where D, T L,(E,) is the set of all complex valued functions
u over E, which possess continuous second partials everywhere, which have
V(x) u(x) to be in L,(E,), and such that « and all its partials of order < 2 are
O([1 + |x|™] exp (— % |x|*)) over x ¢ E, for some m = 0 depending on wu.

Let H be a suitable self-adjoint extension of H, , as specified more precisely
in what follows; let E(A) be the corresponding spectral measure; and let N(\)
for real \ be the dimension of the L,(E,) subspace E((— «, A]) L,(£,). Thus
if N(\) is finite, then (— o, A] contains only point spectra of H and N()) is the
number of these eigenvalues N’ =< A, repeated according to multiplicity.

Now consider the formula

12) N = {1+ 0(1)}[(2\/17)"1‘@ + 1):|‘1 f D — V@I dua(x).
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