Convergence of Chandrasekhar's Method for Inhomogeneous Transfer Problems

P. M. ANSELONE

Communicated by S. Chandrasekhar

1. Introduction. Consider a finite or semi-infinite plane-parallel isotropically scattering atmosphere which is in a state of radiative equilibrium. Let τ_1 ($0 < \tau_1 \le \infty$) denote the normal optical thickness of the atmosphere. Suppose that the albedo for single scattering at optical depth τ is the value at τ of a given measurable function $p(\tau)$, $0 \le \tau \le \tau_1$, such that $0 \le p(\tau) \le 1$. The most familiar example is $p(\tau) \equiv \tilde{\omega}_0$, a constant.

For $0 \le \tau \le \tau_1$, $-1 \le \mu \le 1$, let $I(\tau, \mu)$, $J(\tau)$ and $I(\tau)$ denote the intensity, average intensity and source function pertaining to all radiation in the atmosphere, except reduced incident radiation if any is present. Then

$$g(\tau) = p(\tau)J(\tau) + h(\tau),$$

where $h(\tau)$ is the sum of the components of $g(\tau)$ due to scattering of reduced incident radiation and to emission in the atmosphere. Assume that $h(\tau)$, $0 \le \tau \le \tau_1$, is a given non-negative measurable function.

The following (not mutually exclusive) cases are considered in this paper:

Case A. $au_1 < \infty$, $p(\tau)$ arbitrary, $h(\tau)$ bounded; Case B. $au_1 = \infty$, $\sup_{\tau \ge t} p(\tau) < 1$ for some $t < \infty$, $h(\tau)$ bounded; Case C. $au_1 = \infty$, $p(\tau)$ arbitrary, $\int_0^\infty h(\tau) \ d\tau < \infty$.

Thus, Case A pertains to finite atmospheres, while Cases B and C pertain to semi-infinite atmospheres. If $p(\tau) \equiv \tilde{\omega}_0$, then the condition on $p(\tau)$ in Case B reduces to $\tilde{\omega}_0 < 1$. The significance of the conditions on $h(\tau)$ in the three cases will appear later.

Here are some examples. First, suppose that $h(\tau)$ is due solely to a parallel beam of radiation incident at $\tau = 0$. If πF (F > 0) is the net flux normal to the beam and if $-\mu_0$ $(0 < \mu_0 \le 1)$ indicates its direction, then

$$h(\tau) = \frac{1}{4} F p(\tau) e^{-\tau/\mu_{\bullet}}$$
 (incident parallel beam).

Next, suppose that $h(\tau)$ is due to diffuse radiation incident at $\tau = 0$. If $\pi F(\mu_0)$

537

Journal of Mathematics and Mechanics, Vol. 10, No. 4 (1961).