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Introduction. In 1873 ScmrirLi [9] conjectured that a Riemannian manifold
R, with positive definite and analytic metric can locally be imbedded isometri-
cally as a submanifold of a euclidean space E, , provided n = 3m (m + 1). In
1926 Janer [5] described a method of proof which however (as he himself
observed) was incomplete. In 1927 E. Carran [3] gave a proof based on his
theory of Pfaffian forms. Burstin [1] in 1931 completed the proof of JANET and
also extended it to the case in which the enveloping space is a given Riemannian
space R, with positive definite and analytic metric. Recently Lercurweiss [6]
gave a new proof of BUrRsSTIN’s extension based much more substantially (than
[1]) on the Gauss-Copazzi equations of differential geometry. His proof is more
involved than that of BursTiN. Theorems on global isometric imbeddings of
R, into E, which are of class C* (k = 3) provided the metric tensor of R, is
of class C* have been established by Nasu [8]. For compact R, he assumes
that n = 3m (3m + 11).

The first purpose of this paper is to extend the theorem of JANET-CARTAN-
BursTin to Riemannian manifolds with indefinite metrics (such as the space
of General Relativity). The metric tensors are still assumed to be analytic and
non-degenerate (for semi-positive definite metric, see LuEnsE [7]). We prove the
following theorem (Theorem 1): If the metric tensor g,, of R, has p positive
and ¢ negative eigenvalues (p + ¢ = m) and if the metric tensor g,; of R, has
at least p positive and at least ¢ negative eigenvalues (no restriction being
made on the signature of the remaining eigenvalues), then there exist local
isometric and analytic imbeddings of R,, into R, , provided » = $m (m + 1).
Our proof, like that of BursTtiN, is based on the general outline of JaANET but
otherwise it is 8 new proof even in the case of positive definite metrics.

We also consider in this paper the question of imbedding a given submanifold
R, of R, in a family R, (f) of isometric submanifolds. We prove (Theorem 2)
the existence of such a family of analytic submanifolds which varies analytically
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