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1. Introduction. Consider the non-parametric variational problem

6ffF(u,v)dxdy=O;

where o(z, y) is the extremal function, and v = ¢., v = ¢,. Assume that
F.F,, — F2, > 0. The EULER equation is then the quasi-linear elliptic equation

(1) Fuu¢x:c + 2Fuv¢xy + Fvv¢yﬂ = 0'

The minimal surface equation arises if F = (1 + u® + v}, and has the property,
first proven by S. BernsTEIN [1], that any solution defined for all values of
(x, ), is necessarily a linear function. Generalizations of BERNSTEIN’S theorem
to wider classes of equations have been given by Bers [2], Finn [3], and FInN &
GrLBARG [4]. HEinz [5] has obtained a new proof of BERNSTEIN’S theorem as
a consequence of a deeper result; namely, the existance of an a prior: estimate
of the curvature of a solution of the minimal surface equation.

A conservation law of equation (1) is a pair of functions @ (u, v), A(u, v) for
which

O, v), + A, v), =0

in the domain of any solution ¢(z, y). Equation (1) always possesses three
natural conservation laws, since, as is well known, the differentials

dy = F,dx — F, dy,
@) dt¢ = F — vF, de 4+ oF, dy,
dy = uF,de + F — uF, dy
are exact. In the case of the minimal surface equation, NrrscHE [7] has used
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