The Topology of Weak Convergence of Probability Measures

GOPINATH KALLIANPUR

Communicated by J. R. Blum & M. Rosenblatt

1. Introduction. Let X be a topological space, \mathfrak{F} a σ -field of subsets of X, and $\Pi(X,\mathfrak{F})$ a family of probability measures on (X,\mathfrak{F}) . Let C(X) be the family of all real, bounded, continuous functions on X and $C^+(X)$ the subfamily of non-negative functions in C(X). The notion of convergence most frequently used in probability theory is the following: A sequence $\mu_n((\mu_n \mathfrak{e} \Pi(X,\mathfrak{F})))$ is said to converge weakly to $\mu \mathfrak{e} \Pi(X,\mathfrak{F})$ if and only if $\int f d\mu_n \to \int f d\mu$ as $n \to \infty$ for every $f \mathfrak{e} C(X)$. An appropriate topology in $\Pi(X,\mathfrak{F})$ in which sequential convergence is weak convergence is defined by the following subbasis \mathfrak{B} of neighborhoods in $\Pi(X,\mathfrak{F})$: \mathfrak{B} is the class of all sets of the form

$$W(\mu, f, \epsilon) = \left\{ \mu' \, \mathbf{\epsilon} \, \Pi \colon \left| \int f \, d\mu' \, - \, \int f \, d\mu \right| \, < \, \epsilon \right\}$$

where $\epsilon > 0$ and $f \in C^+(X)$. This topology will be referred to as the W-topology (Blau [1]) or the topology of weak convergence. Another topology which is occasionally considered for $\Pi(X, \mathfrak{F})$ and which is helpful in the study of the W-topology is specified by the subbasis of neighborhoods of the form

$$N(\mu, G, \epsilon) = \{ \mu' \in \Pi(x, \mathfrak{F}) : \mu(G) < \mu'(G) + \epsilon \}$$

where $\epsilon > 0$ and G is an open set in X. This topology was introduced by Blau [1], and we shall refer to it as the Alexandrov topology or the A-topology since the sequential convergence in this topology was introduced by A. D. Alexandrov [2]. We shall refer to the neighborhoods of the two topologies as A-neighborhoods and W-neighborhoods respectively.

It is clear that interesting results in the study of $\Pi(X, \mathfrak{F})$ can be obtained only if we impose further conditions on X, \mathfrak{F} , and the family $\Pi(X, \mathfrak{F})$. The basic assumption on X made throughout this paper is that X is a Tikhonov space, *i.e.* that X is completely regular and T_1 . Unless specifically defined otherwise, the family \mathfrak{F} will be assumed to be the class of all Borel subsets of X, *i.e.* the family generated by the open sets of X; $\Pi(X, \mathfrak{F})$ will be the family of all regular probability measures on \mathfrak{F} ; and $\Pi_1(X, \mathfrak{F})$ the set of all regular finite measures on