A Sublinear Sturm Liouville Problem*

GEORGE H. PIMBLEY, JR.

Communicated by J. B. Keller

A familiar feature of the classical linear regular Sturm-Liouville problem ([2], Chapter X) is the existence of a pure discrete point spectrum lying on the real axis, each eigenvalue being of index one and of finite mutliplicity, and a corresponding system of finite dimensional eigenspaces the continued product of which comprises the complete Hilbert space. It is interesting to find out just how we "spoil" this picture by introducing a nonlinearity.

We consider the following problem in real $L_2(0, 1)$:

(1) D.E.**
$$(p(x)u')' + \lambda^{-1}f(x, u) = 0,$$
B.C.
$$u(0) - ap(0)u'(0) = 0, \quad u(1) + bp(1)u'(1) = 0,$$

$$\lambda \quad \text{real}, \qquad a, b \ge 0.$$

We suppose that p(x) > 0 and p'(x) are continuous, $0 \le x \le 1$ and that f(x, u) is continuous in the strip $0 \le x \le 1$, $-\infty < u < +\infty$. Moreover, f(x, u) is assumed to conform to the following statement:

H-1: For fixed $x \in [0, 1]$, f(x, u) is odd and strictly monotone in $u \in (-\infty, \infty)$. Derivatives $f_u > 0$ and f_{uu} exist, with $f_{uu} \ge 0$ for u < 0, $f_{uu} \le 0$ for u > 0.

$$|f(x, u_1) - f(x, u_2)| \le K |u_1 - u_2|,$$

 $\lim_{x \to 0} u^{-1} f(x, u) = f_u(x, 0) > 0, \quad |f_{uu}| \le M,$

all uniformly on [0, 1].

We treat two subcases which go with the additional hypotheses:

H-2:
$$f(x, u) = O(|u|^{\alpha})$$
 as $|u| \to \infty$, $\alpha < 1$ uniformly on [0, 1].
H-3: $f(x, u) = O(|u|)$ as $|u| \to \infty$ uniformly on [0, 1].

The first of these might be called "asymptotically sublinear," and the second is usually called the "asymptotically linear" case.

^{*} Work performed under the auspices of the U.S. Atomic Energy Commission.

^{**} We use the following abbreviations: D.E. for Differential Equation, B.C. for Boundary Condition, and I.C. for Initial Condition.