An Eigenvalue Problem Related to Stability Questions in Perturbed Autonomous Systems*

W. S. LOUD

Communicated by L. Cesari

1. Introduction. Let A_0 be a real $n \times n$ matrix having 1 as an eigenvalue of order k. Let the Jordan canonical form of A_0 include m blocks along the diagonal which have 1's for diagonal elements. Let there be e_1 blocks of size 1×1 , e_2 blocks of size 2×2 , \cdots , e_q blocks of size $q \times q$, where q is the order of the largest such block. We then have

$$e_1 + e_2 + \cdots + e_q = m,$$

 $e_1 + 2e_2 + \cdots + qe_q = k.$

Let the square matrix of (n-k) rows and columns which is at the lower right corner of A_0 be in some real canonical form, and let it be denoted by B. Since 1 is not an eigenvalue of B, we have that the matrix B-I, where I denotes the identity, is nonsingular. A_0 thus has the form

(1.1)
$$\begin{bmatrix} B_1 & & 0 \\ & B_2 & & \\ & & \ddots & \\ & & & B_m \\ 0 & & & B \end{bmatrix}$$

where a block B_i of size $h \times h$ has h 1's along the main diagonal and (h-1) 1's along the superdiagonal. It is assumed for definiteness that the blocks B_i are in increasing order of size.

Now let D be a real $n \times n$ matrix, and let ϵ be a small real parameter. Consider the matrix $A(\epsilon)$ given by

$$A(\epsilon) = A_0(I + \epsilon D + o(\epsilon)).$$

Of the *n* eigenvalues of $A(\epsilon)$, *k* will reduce as $\epsilon \to 0$ to +1, while the others

^{*} This work was supported by the Mathematics Research Center, U. S. Army under Contract No. DA-11-022-ORD-2059.