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1. Introduction. The problem of determining the distribution of stress in
a semi-infinite elastic solid when a rigid body of prescribed shape is pressed
against its free surface is associated with the name of Boussinesq since it was
first discussed in detail in his classic treatise ([1], pp. 202-255, 713-719). The
detailed solution for the case in which the rigid punch is conical was derived
subsequently by Love [2], but his method of solution does not seem to be
capable of immediate extension to more general shapes of rigid punch. A solu-
tion appropriate to the axisymmetric case was developed by HarpiNGg & SNEDDON
[3] using the theory of Hankel transforms and dual integral equations (see also
pp. 455-468 of [4]). Another form of solution of the axisymmetric case, de-
pending on reducing the problem to the solution of an integral equation of Abel
type, was given by GREEN (see pp. 172-178 of [5]).

The problem was also treated in some detail by a number of Soviet mathe-
maticians, notably SuTAERMAN, LUur’s, LEoNov and Garin. These investiga-
tions, which depend on reducing the problem to that of solving a single integral
equation, are fully described in the second part of GALiN’s book [6]. A useful
summary of these results, in a form accessible to English-speaking readers, is
given in Goobier's review article ([7], pp. 29-35).

In this paper we shall be concerned with the problem of determining the
distribution of stress in a homogeneous, isotropic, semi-infinite elastic body
when the rigid punch is a solid of revolution which is heated and so produces
a non-uniform distribution of temperature on the free surface of the elastic
solid. Part I is concerned with the general theory, which is an immediate gener-
alization of the method of HarpiNg & Sneppon (3], while Parts II, III are
concerned, respectively, with the special cases in which the rigid punch takes
the form of a flat-ended cylinder and a right circular cone. Throughout we make
the usual assumptions of the classical (infinitesimal) theory of elasticity.
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