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1. Introduction. The study of the asymptotic behaviorof S, = & + ... + &,
where ¢, are independent, identically distributed, random variables with mean
0 and finite variance, is an important problem of probability theory whose solu-
tion has attained a considerable degree of perfection. The purpose of this paper
is to begin to develop a theory of another rather extensive class of Markov
processes along somewhat the same lines.

This vague statement can be clarified with an example: Suppose that {X,}
is a random walk on the non-negative integers with the transition probabilities

(1.1 Piyiv1 = %[1 + % + O<li>:|’ Piyi-1 = 1 = Piiva, t#0,

Por = 1 — poo > 0, p;; = 0 otherwise.

We shall prove in § 2 that provided « > —%, so that {X;} is null-recurrent or
transient [6],
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This is our analogue of the central limit theorem giving the limit distribution
of S,/ Vn.

There are, of course, a large number of additional limit theorems for {S.}.
Many (but by no means all) of these are subsumed by the Erpos-Kac-DoNSKER
nvariance principle [3, 2] which says that, in a certain sense, the stochastic
process {S;/V/n, i = 0, 1,2, ---} converges to a Brownian motion (Wiener)
process as n — = ; a large class of path functionals, such as max (S;/Vn, «--,
S.//n), thus are shown to have limiting distributions. The greater part of the
present paper is devoted to showing that a similar convergence occurs in the
theory of processes like the random walks above. The limiting process is a
Wiener process with reflecting barrier at the origin if & = 0, but for other values
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