On the Lifting Property II. Representation of Linear Operators on Spaces L_E^r , $1 \le r < \infty^{-1}$

ALEXANDRA IONESCU TULCEA & CASSIUS IONESCU TULCEA

Communicated by Einar Hille

Introduction. Let Z be a locally compact space and μ a positive Radon measure on Z; consider the corresponding space \mathcal{L}_R^{∞} . There is then (see [16] and [18]) a mapping ρ of \mathcal{L}_R^{∞} into \mathcal{L}_R^{∞} with the following properties:

(I)
$$\rho(f) \equiv f$$
;
(II) $f \equiv g$ implies $\rho(f) = \rho(g)$;
(III) $\rho(1) = 1$;
(IV) $f \ge 0$ implies $\rho(f) \ge 0$;
(V) $\rho(\alpha f + \beta g) = \alpha \rho(f) + \beta \rho(g)$;
(VI) $\rho(fg) = \rho(f)\rho(g)$.

A mapping ρ of \mathfrak{L}_R^∞ into \mathfrak{L}_R^∞ satisfying the conditions (I)–(VI) is called a *lifting* of \mathfrak{L}_R^∞ .

Using essentially the existence of a lifting of \mathfrak{L}_R^∞ , we establish in this paper integral representations for various categories of linear operators on a space L_E^r , $1 \leq r < \infty$, to a space F; here E and F are, in general, locally convex spaces. The main results of this paper are Theorems 1 and 2 of Part I. Almost all the other results are more or less consequences of these theorems. The case of linear operators on the space L_E^r is treated especially in Part II (Theorems 3 and 4). As an immediate consequence, we deduce an integral representation formula for certain categories of linear operators on a space \mathfrak{K}_E to a space F. The results of this paper provide a unified treatment for various classical representation theorems such as: the Dunford-Pettis theorem, the Dunford-Pettis-Phillips theorem, the theorem giving the form of compact operators on a space L_E^1 , the theorem giving the dual of the space L_E^r , $1 \leq r < \infty$, and the Theorem 4 in

¹ This paper was sponsored by the Office of Ordnance Research under contract No. DA-19-020-ORD-4912.