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Introduction. A hypersurface will be understood here to mean a connected
Riemannian n-manifold (n = 2) which is C® isometrically immersed in E"**.
A hypersurface F will be said to be rigid if every hypersurface which is C*
isometric to F is congruent to F. The rigidity of surfaces (n = 2) has been
studied for a long time, cf. [2] and [5], but very few theorems seem to have
been formulated for higher dimensions. One reason for this is that some higher
dimensional analogues of rigidity theorems for surfaces are trivial consequences
of a classical local rigidity theorem which states that a hypersurface is locally
rigid at points where the rank of its second fundamental form is at least three,
cf. [6], page 200. ALLENDOERFER [1], p. 251, has remarked that not all interesting
global rigidity questions can be treated in this way.

Our purpose is to prove several rigidity theorems which are not simply con-
sequences of the classical local theorem. For example, it will be shown that a
hypersurface which bounds a smooth convex body is rigid, provided the rank
of its second fundamental form is at least three at some point. Another theorem
will show that, under certain conditions, a hypersurface cannot be continuously
deformed.

Our techniques can also be used to prove rigidity theorems for surfaces, but
the results obtained in this way are not new. However, it is possible to give
simple proofs of PocorELOV’s theorems that a convex surface is rigid if it is
compact or has a spherical image of area 27. These proofs, in contrast to other
proofs which have been published,* are valid for surfaces of non-negative, rather
than strictly positive, curvature; but they require more smoothness than
PoGoreLov employs.

The last sections of the paper are devoted to some remarks on the properties
of C" isometric imbeddings.

All of the rigidity theorems follow easily from our main result, Theorem I,
which is stated in the next section.

1. The main theorem. Theorem I is, roughly, an n-dimensional analogue

* Professor NIRENBERG has shown me a simple proof for the compact case which does not
require strictly positive curvature.

929
Journal of Mathematics and Mechanics, Vol. 11, No. 6 (1962).



