Partially Characteristic Boundary Problems for Hyperbolic Equations

AVNER FRIEDMAN & WALTER LITTMAN

Communicated by D. GILBARG

Introduction. The purpose of the present paper is to prove that the problem

(0.1)
$$\frac{\partial^2 u}{\partial t_1 \partial t_2} - Lu = f(x, t),$$

$$(0.2) u|_{t,=0} = 0, u|_{t,=0} = 0, u|_{x \in \partial D} = 0$$

is correctly posed, where L is a second order self-adjoint elliptic operator and $x \in D$ (∂D is the boundary of D), $0 \le t_1 < \infty$, $0 \le t_2 < \infty$. The differential equation (0.1) is of hyperbolic type and the boundary conditions (0.2) are given on three surfaces, the first two being characteristic surfaces and the last one being non-characteristic. The problem (0.1), (0.2) does not seem to fall within the category of problems to which Friedrichs' recent paper [4] (for a simplified version see [8]) applies.

To clarify this point, take the special case $Lu = u_{xx}$ and write it as a first order system by introducing

$$x_1 = x$$
, $x_3 + x_2 = t_1$, $x_3 - x_2 = t_2$, $v_1 = \frac{\partial u}{\partial x_1}$, $v_2 = \frac{\partial u}{\partial x_2}$, $v_3 = \frac{\partial u}{\partial x_3}$.

We can write (0.1) in the equivalent form:

(0.3)
$$Mv \equiv \sum_{i=1}^{3} A_{i} \frac{\partial}{\partial x_{i}} + B = F,$$

where

$$v=(v_1\ ,v_2\ ,v_3), \qquad F=(f,0,0), \ A_1=egin{bmatrix} 1&0&0\ 0&-1&0\ 0&0&1 \end{pmatrix}, \qquad A_2=egin{bmatrix} 0&1&0\ 1&0&0\ 0&0&0 \end{pmatrix}, \qquad A_3=egin{bmatrix} 0&0&-1\ 0&0&0\ -1&0&0 \end{pmatrix},$$

Prepared under Contract Nonr 710(16) (NR 044 004) between the Office of Naval Research and the University of Minnesota.