On the Representation Problem for Stationary Stochastic Processes with Trivial Tail Field

DAVID L. HANSON

Communicated by J. R. Blum

1. Introduction and summary. Throughout this paper (Ω, Σ, P) will be a probability space, $\{X_n\}$ for $n=0,\pm 1,\cdots$ will be a real valued strictly stationary stochastic process on (Ω, Σ, P) , Σ_n will be the sub- σ -field of Σ generated by X_k for all $k \leq n$, and $\Sigma_{-\infty}$ will be $\cap \Sigma_n$. Whenever $\{X_n\}$ is a Markov process \bar{P} will be the stationary measure on Borel subsets of the real line defined by $\bar{P}(A) = P\{X_n \in A\}$; $\{P_x\}$ for x real will be the stationary transition probability measures on the real line defined by

$$P_x(A) = P\{X_{n+1} \in A \mid X_n = x\};$$

 $\{P_x^{(n)}\}\$ for x real will be the n-step stationary transition probabilities on the real line defined by

$$P_x^{(n)}(A) = P\{X_{k+n} \in A \mid X_k = x\}.$$

The process $\{X_n\}$ will be called tail trivial and will be said to have a trivial tail field if $A \in \Sigma_{-\infty}$ implies P(A) = 0 or 1.

Let $\{\xi_n\}$ be an independent sequence of random variables uniformly distributed on [0, 1], let $\xi = (\dots, \xi_{-1}, \xi_0, \xi_1, \dots)$, and define T by $T\xi = (\dots, \xi_0, \xi_1, \xi_2, \dots)$. When does there exist a function f on the sequence $\{\xi_n\}$ such that the sequences $\{X_n\}$ and $\{f(T^n\xi)\}$ have the same probability structure (i.e. such that the joint distribution of X_i , \dots , X_{ik} is the same as the joint distribution of $f(T^{i_1}\xi)$, \dots , $f(T^{i_k}\xi)$ for all k and all sequences i_1 , \dots , i_k ? Rosenblatt has shown (see [2] and [3]) that if $\{X_n\}$ is a stationary, ergodic, and aperiodic Markov chain with a denumerable state space, then $\{X_n\}$ has a representation of the above type and in fact $f(T^n\xi) = f(\dots, \xi_{n-1}, \xi_n)$.

The following theorem and corollaries are proved in this paper. The theorem generalizes Rosenblatt's result to a type of Markov process with non-denumerable state space.

This work was performed under the auspices of the United States Atomic Energy Commission.