Maximal Vector Spaces of Light Interior Functions

WILLIAM V. CALDWELL

Communicated by James Serrin

1. Introduction. If f and g are light, interior functions defined in a domain $\mathfrak D$ in the complex plane, the function $\alpha f + \beta g$, (α, β) real numbers) need not be either light or interior. If $\mathfrak W$ is a real linear vector space of functions which are light, interior, and orientation-preserving in $\mathfrak D$, one may inquire if there is some property which characterizes elements of $\mathfrak W$. One class of light interior functions which has proved of interest is the class of pseudo-regular functions. In 1954, Titus & McLaughlin showed that if $\mathfrak W$ is a real linear vector space of pseudo-regular functions in $\mathfrak D$ which contains two analytic functions f and g such that Im $(f'\bar g') \neq 0$ in $\mathfrak D$, then $\mathfrak W$ contains only analytic functions. In the same year, Golomb proved that if $\mathfrak W$ contains two functions f = u + iv and g = p + iq such that $v_x q_y - v_y q_x \neq 0$ in $\mathfrak D$, then $\mathfrak W$ contains only solutions of a uniquely determined elliptic system of first-order partial differential equations.

It follows from Golomb's theorem that if \mathbb{W} consists of the solutions of an elliptic system \mathfrak{L} in a domain \mathfrak{D} , then \mathbb{W} is maximal in the set of functions that are pseudo-regular in \mathfrak{D} . One is led to wonder if the property of *ellipticity* of \mathfrak{L} is essential to preserve the topological and algebraic properties of elements of \mathbb{W} or whether it is enough that \mathfrak{L} be elliptic in \mathfrak{D} except for some "sufficiently thin" set Z on which \mathfrak{L} may be parabolic. The latter proposition is proved in Theorem 3.1 under the additional hypothesis that the coefficients of \mathfrak{L} be Hölder-continuous in \mathfrak{D} .

Two classes of elliptic systems which are of particular interest are the Bers systems and the Beltrami systems. In 1938, Morrey proved that corresponding to each Jordan domain $\mathfrak D$ and each Beltrami system $\mathfrak L$ in $\mathfrak D$, there exists a homeomorphism h of $\mathfrak D$ onto itself such that the class of functions that are solutions of $\mathfrak L$ is the class of analytic functions of h. In the same year, Kakutani proved that if $\mathfrak W$ is a collection of pseudo-regular functions in $\mathfrak D$, a necessary and sufficient condition for $\mathfrak W$ to be a ring is that all elements of $\mathfrak W$ are analytic functions of a fixed pseudo-regular function. In Theorem 3.3 it is shown that if $\mathfrak W$ is the set of solutions of a system $\mathfrak L$ of first-order partial differential equations which is elliptic except at most on a compact, zero-dimensional set Z, a necessary and sufficient condition for $\mathfrak W$ to be a maximal algebra of light, interior, orienta-