Representation Theorems for Positive Functions

SAMUEL KARLIN

Communicated by D. GILBARG

1. Introduction. Let $u_0(t)$, \cdots , $u_n(t)$ represent continuous functions on a finite interval [a, b]. These functions are called a Tchebycheffian system or T-system provided that all the $(n + 1)^{st}$ order determinants

(1)
$$U\begin{bmatrix} t_0, & \cdots, & t_n \\ 0, & \cdots, & n \end{bmatrix} = \begin{bmatrix} u_0(t_0) & u_1(t_0) & \cdots & u_n(t_0) \\ u_0(t_1) & u_1(t_1) & \cdots & u_n(t_1) \\ \vdots & & & \vdots \\ u_0(t_n) & u_1(t_n) & \cdots & u_n(t_n) \end{bmatrix}$$

are of one strict sign, where t_0 , t_1 , \cdots , t_n satisfy

$$a \leq t_0 < t_1 < \cdots < t_n \leq b.$$

Without restricting generality (multiply $u_n(t)$ suitably by +1 or -1), we may assume that the determinants in (1) are positive.

Systems of functions of this type occur frequently in various branches of mathematics and probability theory. For example, if $u_i(t) = t^i$, $i = 0, \dots, n$, then (1) reduces to the familiar Vandermonde determinant. As a consequence of Gantmacher & Krein [5] it turns out that for Sturm-Liouville eigenvalue problems with discrete positive spectrum the first n + 1 eigenfunctions $\varphi_0, \varphi_1, \dots, \varphi_n$ form a T-system. More generally the first n + 1 eigenfunctions associated with an integral transformation

$$T\varphi = \int_a^b K(x, y)\varphi(y)d\sigma(y) \qquad d\sigma \ge 0,$$

where [a, b] is finite and K has an iterate which is strictly totally positive, *i.e.*, satisfies certain determinantal inequalities, constitute a T-system [4].

T-systems play a role in the interpolation problem, the moment problem, the study of oscillation properties of polynomials and in other branches of analysis.

¹ Prepared under the auspices of National Science Foundation Grant 16319.