Some Results on the Asymptotic Behavior of Eigenvalues for a Class of Integral Equations with Translation Kernels*

M. ROSENBLATT

Introduction. The results obtained in this paper are an extension of those obtained in a previous paper [3]. The interest is in finite kernel translation integral equation eigenvalue problems, that is, in the integral equation

(1)
$$\int_{-\tau}^{\tau} r(t-\tau)\varphi(\tau)dt = \lambda\varphi(t).$$

Here $\varphi(t)$ is an eigenfunction and λ the associated eigenvalue. We shall cite the main result established in [3] as Theorem 1 below.

Theorem 1. Let r(t) be a positive definite even function on [-2T, 2T] of the form

(2)
$$r(t) = (-1)^k c \mid t \mid^{2k-1} + b(t), c > 0,$$

with b(t) a function 2k-1 times continuously differentiable whose $(2k-1)^{\text{th}}$ derivative is absolutely continuous $(k=1,2,\cdots)$. Then the j^{th} eigenvalue λ_i (indexed in descending magnitude) of integral equation (1) is asymptotically the same as

(3)
$$2(2k-1)! c \left(\frac{2T}{j\pi}\right)^{2k}$$

as $j \to \infty$.

The following definition will be convenient in stating the principal result of this paper. Consider a function g(t) defined on [-2T, 2T]. Let β be a positive number that is not an integer. Assume that g(x) is differentiable up to order $[\beta]$ ($[\beta]$ is the greatest integer less than β), that is, $g^{(i)}(x)$ is absolutely continuous

^{*} This research was carried out under National Science Foundation Grant NSF-GP-1.