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Introduction. Consider a stationary random process {X, ;n = 0, %1, ...}.
It has recently been of some interest to find conditions on {X,} such that one
can construct a process {Y,} with the same probability structure as {X,} on
the space of independent identically distributed random variables {£.} (sa
uniformly distributed on [0, 1]) by a Borel function f(% , &, , +++) =
f(é)(g = (- y €y b0, B, e ')) and its ShiftS, that is,

¢)) Y, = {(T"9), n=0,=x1,---.

Here f is to be a function of & , £-,, - -+ and T is the shift operator. It can be
shown that a necessary condition is that {X,} be purely nondeterministic or
regular (in the terminology of A. N. Kolmogorov [5]). In fact it has been shown
that the necessary and sufficient condition for such a representation in the case of
a countable state Markov chain is that it be regular [6]. Most of the sufficient
conditions for such a representation in the case of a continuous state Markov
process contain something reminiscent of a Doeblin condition [2]. We explicitly
mention and state an interesting sufficient condition of this type obtained
recently by Hanson:

(i) {X.} s a stationary regular Markov process

(ii) There exist Borel sets A, B of the state space and a nonnegative measure ¢ on
the state space such that P(B) > 0 (P is the stationary measure induced by the process
on the state space), $(A) > 0 and for all x ¢ B and A’ C A the transition measure

@ Pz, A’) = ¢(4").
It is clear that it would be extremely interesting to investigate a class of
processes which would not satisfy a Doeblin-like condition even when they are
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