Approximation of Non-parametric Surfaces of Finite Area

CASPER GOFFMAN*

Communicated by J. W. T. Youngs

1. In answering a conjecture of mine, [G], in the affirmative, J. H. Michael, [M], proved the following:

If f is a measurable real function, which vanishes outside a compact set K, whose Lebesgue area A(f; E) is finite on compact sets E, then if $\epsilon > 0$ and Q is a closed square such that K lies in its interior, there is a Lipschitzian g, with support in Q, such that

$$m[(x, y): f(x, y) \neq g(x, y)] < \epsilon$$

and

$$|A(f;Q) - A(g;Q)| < \epsilon.$$

(For the definition of Lebesgue area for non-parametric surfaces given by measurable functions see [C] or [G].)

The purpose of this note is to show that the technique used by Michael may be slightly modified so that the approximating function g may be taken to be continuously differentiable, and that this is the best possible result. A discussion with Harry Pollard contributed to the present form of Theorem 2.

- 2. In this section, we recall some known facts about the class of functions under consideration here (for details, see [K] and [G]). Let α be the set of functions, which vanish outside compact sets, for which $A(f; E) < \infty$ for every compact set E. Then,
- (a) $f \in \Omega$ if and only if the partial derivatives of f, in the distribution sense, are totally finite measures μ_1 and μ_2 .
- (b) If m is Lebesgue measure, then $A(f; E) = \alpha(E)$, for Borel sets E, where α is the total variation of the vector measure (μ_1, μ_2, m) .

^{*} Supported by National Science Foundation Grant number NSF G-18920.