Best Approximation Properties of Spline Functions of Odd Degree

CARL DE BOOR

Communicated by Garrett Birkhoff

Introduction. In [4], interpolation by cubic spline functions is discussed, and some best approximation properties of the cubic spline fit are described. This note extends the results of [4], in a somewhat modified form, to spline functions of odd degree m = 2k - 1, $k \ge 2$.

Definition. A spline function of degree m with joints $\xi_1 < \xi_2 < \cdots < \xi_n$ is defined as a function F(x) with the following two properties ([2], p. 67):

- a. In each of the intervals $(-\infty, \xi_1)$, $[\xi_1, \xi_2)$, \cdots , $[\xi_n, \infty)$, F(x) is a polynomial of degree m;
- b. F(x) has continuous derivatives through the $(m-1)^{st}$, or, for short, $F(x) \in C^{m-1}$.

The class of functions F(x) with these properties will be denoted by $S_m(\xi_1, \dots, \xi_n)$.

The following lemma establishes the existence and uniqueness of a spline function of degree (2k-1) with (n-1) joints which coincides with a given function f(x) at (n+1) prescribed points. The lemma is a consequence of Theorem 2 in [3], p. 258.

Lemma 1. Let f(x) be any function of class $C^k[a, b]$. For each choice of n+1 abscissae x_i , $a = x_0 < x_1 < \cdots < x_n = b$, there exists exactly one spline function in $S_{2k-1}(x_1, \dots, x_{n-1})$, denoted by $\bar{s}(x)$, such that

(1)
$$\bar{s}(x_i) = f(x_i), \qquad i = 0, \cdots, n,$$

(2)
$$\bar{s}^{(k+j)}(x_i) = 0, \quad i = 0, n; \quad j = 0, \dots, k-2,$$

where $\bar{s}^{(m)}(x)$ denotes the m^{th} derivative of $\bar{s}(x)$.

It has been known for some time (cf., e.g. [2], p. 67) that in the case k = 2 of cubic splines the interpolating function $\bar{s}(x)$ minimizes $\int_a^b [u''(x)]^2 dx$ among all functions $u(x) \in C^2$ which coincide with f(x) at the points x_i , $i = 0, \dots, n$. The