Further Results on the Representation Problem For Stationary Stochastic Processes With Trivial Tail Field

J. R. BLUM¹ AND D. L. HANSON²

Communicated by M. Rosenblatt

1. Introduction. Throughout this paper $\{X_n\}$ for $n=0, \pm 1, \cdots$ will be a strictly stationary stochastic process on a probability space (Ω, Σ, P) , the σ -field generated by $\{X_n\}$ will be Σ , the sub- σ -fields of Σ generated by X_k for all $k \geq n$ and all $k \leq n$ will be Σ^n and Σ_n respectively, $\Sigma_{-\infty} = \bigcap \Sigma_n$, and T will be the shift transformation on Σ induced by $\{X_n\}$ in such a way that $\{X_0 \in B\} = T\{X_1 \in B\}$ etc. The process $\{X_n\}$ is called tail trivial if $\Sigma_{-\infty}$ contains only sets of measure zero and one.

Let $\{\xi_n\}$ for $n=0,\pm 1,\cdots$ be an independent sequence of random variables uniformly distributed on [0,1], let $\xi=(\cdots,\xi_{-1},\xi_0,\xi_1,\cdots)$, and define $T\xi=(\cdots,\xi_0,\xi_1,\xi_2,\cdots)$. When does there exist a function f on the sequence $\{\xi_n\}$ such that the sequences $\{X_n\}$ and $\{f(T^n\xi)\}$ have the same probability structure (i.e. such that the joint distribution of X_{i_1},\cdots,X_{i_k} is the same as the joint distribution of $f(T^{i_1}\xi),\cdots,f(T^{i_k}\xi)$ for all k and all sequences i_1,\cdots,i_k ? Rosenblatt has shown (see [3]) that if $\{X_n\}$ is a stationary, ergodic, and aperiodic Markov chain with a denumerable state space then $\{X_n\}$ has a representation of the above type and in fact he obtains an f of the form $f(T^n\xi)=f(\cdots,\xi_{n-1},\xi_n)$. In [1] Rosenblatt's result is generalized to a class of tail trivial Markov processes which includes ergodic, aperiodic Markov chains and which also includes some processes with a nondenumerable state space.

Our interest lies mainly in representations of the form obtained by Rosenblatt (i.e. of the form $f(T^n\xi) = f(\dots, \xi_{n-1}, \xi_n)$) which can be thought of as representations in terms of the past and present ξ_k 's. It is easy to show (see for example Lemma 1 of [2]) that in order to obtain a representation of the desired type the original process $\{X_n\}$ must be tail trivial.

¹ Research supported by the National Science Foundation, Grant NSF G-21219.

² Sandia Corporation. Research done under the auspices of the United States Atomic Energy Commission.