An Ergodic Theorem with Weighted Averages

GLEN BAXTER1

Communicated by M. Rosenblatt

1. Introduction. In this note we will prove a point-wise convergence theorem analogous to the ergodic theorem, the novelty being that we use a system of weighted averages. The work of Chacon-Ornstein [2], Dunford-Schwartz [4], and Hopf [7] suggest that a more general approach could be adopted than the one we will use. However, so as not to obscure the basic ideas, we consider the simplest possible case, where (S, \mathfrak{F}, m) is a finite measure space, f(s) is an integrable function with respect to m, and T is a one-one measure preserving point transformation from S into itself.

Let $\{f_k, 1 \leq k < \infty\}$ be a sequence of non-negative numbers for which

$$\sum_{k=1}^{\infty} f_k = 1,$$

and define a sequence $\{u_k, 0 \le k < \infty\}$ by

(2)
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \cdots + f_n u_0, \quad u_0 = 1.$$

For every $n, 0 \le u_n \le 1$, and it is well-known that

(3)
$$\lim_{n\to\infty} u_n = \left(\sum_{k=1}^{\infty} k f_k\right)^{-1},$$

where the term on the right in (3) is zero if $\sum kf_k$ is not convergent. We are interested in the behavior of the ratios

(4)
$$R_{n}(s) = \sum_{m=0}^{n} u_{m} f(T^{m} s) / \sum_{m=0}^{n} u_{m} ,$$

as n tends to infinity.

In the main theorem, it is shown that the convergence almost everywhere of $R_n(s)$ is assured if $R_n(s)$ and $R_n(Ts)$ have the same limiting behavior, that is, if

(5)
$$R_n(s) - R_n(Ts) \to 0 \quad \text{a.e.}$$

¹ This research was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR 62-252.