On Some Classes of Continuous Functions with Convergent Fourier Series

A. M. GARSIA & S. SAWYER

Communicated by E. Hopf

Introduction. In this work we will study real valued continuous functions which are periodic of period 2π . For reasons of convenience these functions will be assumed, unless otherwise stated, normalized to have minimum zero and maximum one. Given such a function f(x) we set

$$E_{\nu} = \{x: f(x) > y\}.$$

In view of the periodicity assumptions we can visualize E_{ν} as a subset of the unit circle. Since E_{ν} is open, it will be a union of open intervals; let $N(E_{\nu})$ be the number of such intervals (finite or infinite) counted on the unit circle.

S. Banach [1] considered, instead of $N(E_{\nu})$, the function $n(y_0)$ which counts the number of intersections of the graph of f(x) with the line $y=y_0$. However, for any given f(x), the relation

$$n(y) = 2N(E_y)$$

holds for almost every y. The function $N(E_y)$ could well be infinite on a set of positive measure, nevertheless from a result of N. Bary [2] it follows that every continuous function is the sum of three continuous functions each having an almost everywhere finite $N(E_y)$.

Our main results are concerned with the classes $\mathcal{C}_{\log N}$ and $\mathcal{C}_{(\log N)^{\frac{1}{2}}}$ of functions satisfying respectively the two conditions

(I.1)
$$\int_0^1 \log N(E_{\nu}) \ dy < \infty \quad \text{and} \quad (I,2) \qquad \int_0^1 \left[\log N(E_{\nu}) \right]^{1/2} \ dy < \infty .$$

Let $S_n(x, f)$ denote, as customary, the n^{th} partial sum of the Fourier series of f(x). These results can be stated as follows.

Theorem I.1. If f(x) is in $\mathbb{C}_{\log N}$, then

$$S_n(x, f) \to f(x)$$

uniformly in $[-\pi, \pi]$.

589

Journal of Mathematics and Mechanics, Vol. 13, No. 4 (1964).