Normal Extensions of Unbounded Formally Normal Operators¹

GEORGE BIRIUK & EARL A. CODDINGTON

Communicated by F. Browder

1. Introduction. If A is an operator in a Hilbert space \mathfrak{H} , we will denote by $\mathfrak{D}(A)$ its domain, and by $\mathfrak{N}(A)$ its null space. A formally normal operator N in \mathfrak{H} is a densely defined closed operator such that $\mathfrak{D}(N) \subset \mathfrak{D}(N^*)$, and $||Nf|| = ||N^*f||$ for all $f \in \mathfrak{D}(N)$. We shall only be concerned with unbounded formally normal operators in this paper. A normal operator N in \mathfrak{H} is a formally normal operator satisfying $\mathfrak{D}(N) = \mathfrak{D}(N^*)$. In an earlier work [1] one of the authors gave necessary and sufficient conditions in order that a formally normal operator N have a normal extension N_1 in the Hilbert space \mathfrak{H} . These conditions concern the space $\mathfrak{M}(I+N^*\bar{N}^*)$, where I is the identity operator and \bar{N} is the restriction of N^* to $\mathfrak{D}(N)$. The results were obtained by applying the von Neumann extension theory for symmetric operators. Previous work on this problem was done by Y. Kilipi [3], [4] and R. H. Davis [2].

In §2 we give a more direct and geometrical derivation of the above-mentioned results by exploiting the relationship between the graphs of N and an extension N_1 . We then show how the von Neumann result, characterizing when a symmetric operator can be extended to a self-adjoint one, appears as a consequence.

In §3 we consider the problem of extending a maximal formally normal operator N in a Hilbert space \mathfrak{F}_1 to a normal operator \mathfrak{N}_1 in a Hilbert space \mathfrak{F}_2 containing \mathfrak{F}_1 as a subspace. If \mathfrak{N}_1 is such an operator and if $\mathfrak{D}(\mathfrak{N}_1) \cap (\mathfrak{F} \ominus \mathfrak{F}_1)$ is dense in $\mathfrak{F} \ominus \mathfrak{F}_1$, then \mathfrak{N}_1 restricted to $\mathfrak{D}(\mathfrak{N}_1) \cap (\mathfrak{F} \ominus \mathfrak{F}_1)$ is a formally normal operator N_2 in $\mathfrak{F}_2 = \mathfrak{F} \ominus \mathfrak{F}_1$. Moreover the operator $\mathfrak{N} = N \oplus N_2$ is formally normal in \mathfrak{F} and satisfies $N \subset \mathfrak{N} \subset \mathfrak{N}_1 \subset \overline{\mathfrak{N}}^*$. The results of §2 are then applied to characterize all such \mathfrak{N}_1 .

A sufficient condition for a normal extension \mathfrak{N}_1 of N to be such that $\mathfrak{D}(\mathfrak{N}_1) \cap \mathfrak{G}_2$ is dense in \mathfrak{G}_2 is that the dimension of the space $\mathfrak{N}(I + N^*\bar{N}^*)$ be finite. In this case it is shown that

$$\mathfrak{N}(I+N^*\bar{N}^*)=\mathfrak{N}(I+\bar{N}^*N^*),$$

¹ This work was supported in part by the National Science Foundation.