Hamilton's Theory and Generalized Solutions of the Hamilton-Jacobi Equation

E. D. CONWAY AND E. HOPF*

1. Introduction. Let f(t, x, v) be of class C'' and let

$$f_{vv}(t, x, v) > 0$$
 and $f_{v}(t, x, \pm \infty) = \pm \infty$,

respectively, for all values of the real variables t, x, v. Let g(t, x, z) be the conjugate function figuring in the Legendre transformation and its inverse

$$z = f_v(t, x, v),$$
 $v = g_z(t, x, z),$
 $f(t, x, v) + g(t, x, z) = vz,$

(with t, x as parameters). g(t, x, z) is then defined and also of class C'' for all values of t, x, z.

The classical theory of Hamilton (see the respective chapters in [1] and [2]) furnishes smooth solutions of the Hamilton-Jacobi equation

$$(1.1) J_t + f(t, x, J_x) = 0,$$

by means of the associated variational problem

$$\delta \int_{t_0}^{t_1} g(\tau, x(\tau), \dot{x}(\tau)) d\tau = 0,$$

in the following direct way. Consider the endpoint t_1 , $x_1 = x(t_1)$ fixed and the other endpoint $(t_0, x(t_0))$ variable on a fixed curve γ (of class C'') in the plane of (t, x). The solutions $x(\tau)$ of this variational problem, for various fixed endpoints (t_1, x_1) are the extremals (extremal = stationary curve for fixed end points) that meet γ transversally. Suppose that these transversal extremals form a field in some onesided neighborhood N of γ . Then, for any point (t, x) inside of N, the expression

$$J(t, x) = \int_{t_0}^t g(\tau, x(\tau), \dot{x}(\tau)) d\tau,$$

^{*} The second author wishes to express his indebtedness to the Office of Naval Research for a research contract at Indiana University.