The Cauchy Problem for Degenerate Parabolic Equations

WENDELL H. FLEMING

Communicated by E. Hopf

1. Let points of euclidean E^n be denoted by (s, x), where s is a scalar and $x = (x_1, \dots, x_n)$. It is assumed that $0 \le s \le T$ where T is a positive number which is fixed throughout the paper. Let L be a linear partial differential operator of the form

$$L(u) = u_s + \sum_{i,j=1}^{n} a_{ij}(s, x) u_{x_i x_j}$$
.

The symmetric matrix $a(s, x) = (a_{ii}(s, x))$ is nonnegative definite. If it is everywhere positive definite, then L is a parabolic operator. When some of the characteristic values of a(s, x) are 0 we call L a degenerate parabolic operator.

In this paper we shall consider quasi-linear equations of the form

$$(1.1) L(u) + F(s, x, u, u_x) = 0,$$

together with the terminal data

$$(1.2) u(T, x) = U(x).$$

By Cauchy problem we mean that of solving (1.1) in the strip $0 \le s \le T$, $x \in E^n$ with the data (1.2). The gradient in the space variables x is denoted by

$$u_x = (u_{x_1}, \cdots, u_{x_n}).$$

If L is degenerate the Cauchy problem need not have any solution in the classical sense. However, instead of (1.1)–(1.2) we can consider approximate Cauchy problems depending on a parameter ϵ in which L is replaced by a uniformly parabolic operator L^{ϵ} . For each $\epsilon > 0$ the approximate problem has a solution $u^{\epsilon}(s, x)$ and we show that if conditions (A_1) , (A_2) , (H_2) are satisfied by the functions a(s, x), F(s, x, u, p), U(x), then u^{ϵ} tends to a limit u as $\epsilon \to 0^+$. Under more restrictive assumptions we show that the limit u is a generalized solution

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin, under Contract No.: $D\Lambda$ -11-022-ORD-2059.