Some Further Results on Central Limit Theorems for Non-linear Functions of a Normal Stationary Process*

TZE-CHIEN SUN

Communicated by M. Rosenblatt

Introduction. In [1] the following theorem was proved (see Theorem 2 and Theorem 3 in [1]):

Theorem 0. If X_t , $t = 0, \pm 1, \pm 2, \cdots$ is a real normal stationary process with mean $EX_t = 0$ for all t and covariances

$$r_k = EX_tX_{t+k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\lambda} f(\lambda) d\lambda, \qquad k = 0, \pm 1, \pm 2, \cdots,$$

where $f \in L^2(-\pi, \pi)$ and

(1)
$$\lim_{N\to\infty} \frac{1}{2\pi N} \int_{-\pi}^{\pi} \frac{\sin^2 \frac{N}{2} \lambda}{\sin^2 \frac{1}{2} \lambda} f(\lambda) d\lambda$$

exists and is finite, then the following n random variables

$$Y_{N,\alpha} = N^{-\frac{1}{2}} \sum_{j=1}^{N} \left[\prod_{j=1}^{m_{\alpha}} X_{t+k_{j}}(\alpha) - E\left(\prod_{j=1}^{m_{\alpha}} X_{t+k_{j}}(\alpha)\right) \right],$$

 $\alpha=1,\,2,\,\cdots$, n, where m_{α} are positive integers and $k_i^{(\alpha)}$ are integers, are asymptotically jointly normally distributed with mean zero and some finite covariances. In particular, if all the m_{α} are even integers, the condition (1) is not needed.

Hence if

$$Y_{t} = \sum_{m=1}^{M} \sum_{\substack{k_{1}=-K\\i=1,\dots,m}}^{K} a_{k_{1},\dots,k_{m}} \left[\prod_{j=1}^{m} X_{t+k_{j}} - E\left(\prod_{j=1}^{m} X_{t+k_{j}}\right) \right],$$

where a_{k_1}, \dots, k_m are any constants and M and K are any positive integers, then

^{*} Part of this research was supported by the Office of Naval Research under Contract Nonr 562(29) at Brown University.