On the Morse Index Theorem*

S. SMALE

Communicated by A. H. TAUB

We give a generalization of the Morse Index Theorem from one to several independent variables. Before stating our theorem, we give some preliminary definitions.

Let M be a C^{∞} compact connected manifold with nonempty boundary and a smooth measure. We say that a domain M' of M with smooth boundary is an open set of M such that the boundary $\partial \bar{M}'$ of the closure of M' is a C^{∞} submanifold of M of codimension 1. A deformation of M is a family of domains M_t of M with smooth boundary, $a \leq t \leq b$, such that $\bar{M}_a = M$, and M_t is properly contained in M_* if t > s. The deformation is smooth if $\partial \bar{M}_t$ depends in a C^{∞} manner on t. The deformation is of ϵ -type if the measure of M_b is less than ϵ .

Let E be a Riemannian vector space bundle over M (so each fiber has assigned an inner product in a smooth way), and E_t be the part of E over \overline{M}_t (if M_t is a deformation). Denote by $C^{\infty}(E)$ the C^{∞} sections of E and by $C_{k-1}^{\infty}(E)$ those which are zero with the first (k-1) derivatives on ∂M . We define the M orse $Index\ \beta(L)$ of a strongly elliptic self-adjoint operator $L: C_{k-1}^{\infty}(E) \to C^{\infty}(E)$ (see below) of order 2k as follows. Define the bilinear form B_L on $C_{k-1}^{\infty}(E)$ by

$$B_L(u,v) = \int_M (Lu(x),v(x)) \ dx.$$

Then $\beta(L)$ is the maximal dimension of a subspace of $C_{k-1}^{\infty}(E)$ on which B_L is negative definite.

Given M_{ι} , let

$$L_t: C^{\infty}_{k-1}(E_t) \to C^{\infty}(E_t)$$

be the "restriction" of L and let

$$\alpha(t) = \dim \left\{ u \in C_{k-1}^{\infty}(E_t) \mid L_t u = 0 \right\}.$$

If $\alpha(t) > 0$, t will be called *conjugate* (relative to M_{\star} of course) with multiplicity $\alpha(t)$. Of course in the Morse Theory L is defined by the Jacobi equation and a conjugate t of M_{\star} will correspond to a geodesic with conjugate end points.

^{*} Research partially supported by NSF Grant GP-2497 and NONR 3656(14).