Invariant Subspaces for Normal Operators

ROE GOODMAN'

Communicated by G-C. ROTA

1. Introduction. Let \mathfrak{R} be a separable Hilbert space and N a bounded, normal operator on $\mathfrak{R}(N^*N=NN^*)$. Suppose \mathfrak{M} is a closed subspace of \mathfrak{R} invariant under N. Does it follow that \mathfrak{M} is invariant under N^* (i.e. that \mathfrak{M}^\perp is invariant under N)? When \mathfrak{R} is finite-dimensional, the answer is yes [4, p. 162], and this property characterizes the normal operators on \mathfrak{R} . When \mathfrak{R} is not finite-dimensional, the simplest example, e.g. a bilateral shift, shows that this property need not hold. What is true, in the case of a unitary operator $U(UU^* = U^*U = I)$, is that this example is the general case, i.e. U is the direct sum of a bilateral shift S of multiplicity m and a unitary V, such that the closed invariant subspaces for V are all invariant also under V^* .

By embedding U into the unitary representation $n \to U^n$ of the group \mathbb{Z} of integers, we see that the invariant subspaces for U are precisely the "one-sided" invariant subspaces for this representation, i.e. those subspaces \mathfrak{M} such that $U^n\mathfrak{M} \subset \mathfrak{M}$ for all $n \geq 0$. One may now ask, given a locally compact abelian group partially ordered by a proper closed semi-group of positive measure, and a unitary representation U of U on U, when does U contain proper one-sided invariant subspaces? When U is the regular representation of U on U of U on the positive semi-group is always a proper one-sided invariant subspace (cf. [2]). In case U of U or U, we prove that up to multiplicity U is the only proper one-sided invariant subspace. In particular, it follows that in this case every spectral measure on U of U or a representation U vanishes on a set of positive Haar measure if and only if U contains no proper one-sided invariant subspaces (this result is a stronger form of theorem 2.1 of [3]).

2. By a representation U of a locally compact group G we shall mean a strongly continuous unitary representation $x \to U_x$ of G on a separable Hilbert space $\mathfrak{F}(U)$. Equivalence of representations means unitary equivalence, quasi-equivalence means equivalence up to multiplicity, and we denote by $\mathfrak{R}(U)$ the

¹ This research was supported by a NAS-NRC post-doctoral fellowship and NSF Contract GP 2600.