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I. Introduction. A classical and well known theorem states that complex
valued functions F(w) € L,(— ©, o) are boundary values in the L, norm of
functions

Flp) =F(lc+iw)eH, as o¢—0,

if and only if F(w) is the Fourier transform of some f(f) ¢ L,(0, «). Here, H*
denotes holomorphic functions F(¢ + 4w) which are L, in the right half plane
as a function of w, uniformly for all ¢ > 0. Moreover, according to Titchmarsch
[1], F(p) is the Laplace transform of f (the one sided Paley-Weiner theorem)
and the real and imaginary components of f satisfy reciprocal Hilbert transforms.
The importance of this theorem and similar results on the boundary behavior
of holomorphic functions in a half plane is, of course, well recognized (c.f.
Hoffman [5]). Recently, however, we were led to extend the Titchmarsch
theorem to consider boundary values of a class of functions which are holo-
morphic and of algebraic growth at infinity. The boundary values belong to a
distributional class which contains L, . More precisely, it was possible to give
necessary and sufficient conditions so that the class H* of functions, which
are holomorphic in the half plane Re p > 0 and bounded by a polynomial
uniformly in every half plane Re p = o > 0, should converge to a distribution
in S’ (tempered distribution). The condition is that the distribution in S’
should be the Fourier transform of something in S8’ M D} (tempered distri-
butions having their support in the positive half axis) whose Laplace transform
is, in turn, the function in H*. This theorem was proven in [2] as a variant of
a previous result of H. A. Lauwerier [3], where it is shown that every function
in H* converges to the Gelfand transform of some distribution in D/ . The
theorem of Lauwerier does not, however, yield information on the tempered
boundary behavior of the half plane function. It will be shown herein that
not every function in H* has S’ boundary values (convergence is in the S’
topology), and that the conditions for our theorem to hold are the best possible.
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