Distributional Boundary Values of Functions Holomorphic in a Half Plane

E. J. BELTRAMI & M. R. WOHLERS

Communicated by G. Temple

I. Introduction. A classical and well known theorem states that complex valued functions $F(\omega)$ ε $L_2(-\infty, \infty)$ are boundary values in the L_2 norm of functions

$$F(p) \equiv F(\sigma + i\omega) \varepsilon H^2$$
, as $\sigma \to 0$,

if and only if $F(\omega)$ is the Fourier transform of some $f(t) \in L_2(0, \infty)$. Here, H^2 denotes holomorphic functions $F(\sigma + i\omega)$ which are L_2 in the right half plane as a function of ω , uniformly for all $\sigma > 0$. Moreover, according to Titchmarsch [1], F(p) is the Laplace transform of f (the one sided Paley-Weiner theorem) and the real and imaginary components of f satisfy reciprocal Hilbert transforms. The importance of this theorem and similar results on the boundary behavior of holomorphic functions in a half plane is, of course, well recognized (c.f. Hoffman [5]). Recently, however, we were led to extend the Titchmarsch theorem to consider boundary values of a class of functions which are holomorphic and of algebraic growth at infinity. The boundary values belong to a distributional class which contains L_2 . More precisely, it was possible to give necessary and sufficient conditions so that the class H^+ of functions, which are holomorphic in the half plane Re p > 0 and bounded by a polynomial uniformly in every half plane Re $p \ge \sigma > 0$, should converge to a distribution in S' (tempered distribution). The condition is that the distribution in S'should be the Fourier transform of something in $S' \cap D'$ (tempered distributions having their support in the positive half axis) whose Laplace transform is, in turn, the function in H^+ . This theorem was proven in [2] as a variant of a previous result of H. A. Lauwerier [3], where it is shown that every function in H^+ converges to the Gelfand transform of some distribution in D'_+ . The theorem of Lauwerier does not, however, yield information on the tempered boundary behavior of the half plane function. It will be shown herein that not every function in H^+ has S' boundary values (convergence is in the S'topology), and that the conditions for our theorem to hold are the best possible.