Singular Symmetric Positive First Order Differential Operators*

R. S. PHILLIPS & LEONARD SARASON

The study of first order symmetric positive differential operators was initiated by Friedrichs [2] in an effort to devise a theory which includes differential equations of mixed type. The differential systems considered in this theory are of the form

(1)
$$Ku = \sum_{\lambda=1}^{r} A^{\lambda} \frac{\partial u}{\partial x_{\lambda}} + Cu = f,$$

for x in a domain G contained in R', where u is a vector-valued function, the $\{A^{\lambda}(x)\}$ being symmetric matrix-valued functions continuously differentiable in \bar{G} , and C being a continuous matrix-valued function in \bar{G} . Such a system is called positive if

(2)
$$2k \equiv C + C' - \sum \frac{\partial A^{\lambda}}{\partial x_{\lambda}} > 0, \quad x \in G.$$

In order that this problem be well-posed suitable boundary conditions must be imposed. The most convenient way to define the boundary conditions is in terms of the boundary matrix

$$(3) B(x) = \sum_{\lambda} A^{\lambda}(x) n_{\lambda}(x),$$

where $\{n_{\lambda}(x)\}$ are the components of the outer normal to the boundary β at x. At each point x of β a maximal positive (relative to B(x)) subspace $N_{+}(x)$ is chosen and the boundary condition is simply that u(x) lie in $N_{+}(x)$ at each point of β . Friedrichs showed that this problem was well-posed provided that B(x) was of constant rank near β , that β was of class C^{2} , and that $N_{+}(x)$ contained no null vectors (relative to the non-singular part of B(x)) and was smoothly varying on β . Later Lax and Phillips [4] obtained a more direct proof which allowed for null vectors in $N_{+}(x)$. A somewhat different approach was developed by Sarason [10] who treated the inhomogeneous boundary value problem assuming again that $N_{+}(x)$ had no null vectors. However Sarason

^{*} Sponsored by the National Science Foundation (GP-1883), the Office of Naval Research (Nonr-225-79) and the Air Force Office of Scientific Research [AF-49(638)-1345].