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1. Introduction. In this paper { X,} will always be an irreducible, transient,
Markov chain with states in a denumerable set @ (which, when convenient,
we may label with the non-negative integers), and with n-th step transition
probability matrix P,(z, v). We shall be concerned with the asymptotic behavior
of the quantities P,(n < Vy < o) and P,(Ts > n), where B C Q is a finite
nonempty set, and V; , T are respectively the time of first and last entrance
into the set B. When the chain has an invariant measure =(z), we shall also
investigate the asymptotic behavior of the quantity

Exm) = > 7@P.(Vs < n).

z

Necessary notation and definitions are introduced in Sec. 2
Our principal results are as follows. In Sec. 3 we show that when the chain
has an invariant measure w(z), then if C(B) is the capacity of B, we have

(1.1) es(m) = Ezin) — Ezin — 1) 4 C(B), n— o,
and thus
(1.2) Ezm) ~nC(B), n— .

Moreover, Ez(n) — nC(B) is nondecreasing, but the limit may either be finite
or infinite. The behavior of the above quantity is closely related to that of
the quantity

Z;)Px(j < Vi < ).

Our first task is to establish the conditions for finiteness. In Theorem 3.2 and
Corollary 3.1 we show that for each finite nonempty set B and arbitrary state z,
if for some state, say 0, we have

(13) > 3 P0,0 = ZRO,0 < =,

n=0 j=n+l1
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