Integration on Real Analytic Varieties I. The Volume F.lement

LUTZ BUNGART

Communicated by S. S. CHERN

1. Introduction. Suppose V is a complex analytic subvariety of an open subset U in C^n , say of pure dimension k. It has been shown by P. Lelong in [5] that the integral

 V_r being the set of regular points of V_r , exists for any continuous 2k-form α on U with compact support.

Suppose, furthermore, that we are given a hermitian metric on U. Let dv be the volume element on V_r associated with the hermitian metric induced on V_r . As indicated in the last corollary of [5], it follows immediately from the above theorem that

$$\int_{V} dv = \int_{V_{\bullet}} dv$$

converges. In fact, if $\beta = \sum_i h_{ij} dz_i \wedge d\bar{z}_i$ is the two-form associated with the hermitian metric on U, then

$$dv = \frac{1}{k!} \left(\frac{i}{2} \beta \right)^k \mid V_r.$$

Let now V be a real analytic subvariety of an open subset U of R^n and define V, to be the set of points on V at which V is a manifold of dimension k. Suppose furthermore that V, can be oriented. We prove that (1.1) exists for a continuous k-form α on U with compact support. This, of course, includes Lelong's result. Our proof seems also to be less involved. However, we should mention that P. Lelong derives with his methods a much deeper result, namely, a special case of Stokes' theorem which we will prove in full generality in a subsequent paper.

If there is given a Riemannian metric on U and if dv denotes the volume element associated with the metric induced on V_r , then we prove that (1.2)