Integration on Real Analytic Varieties II. Stokes Formula

LUTZ BUNGART

Communicated by S. S. CHERN

1. Introduction. Let V be a subvariety of some open set in R^n and let V_r^k be the set of regular points on V at which V is of dimension k. Let α be a C^0 differential k-form on R^n . It was shown in [3, section 3] that α is integrable on $V_r^k \cap K$ for any compact subset K of V. In the present paper we show that Stokes' formula holds:

$$\int_D d\alpha = \int_{\partial D} \epsilon_D^k \alpha$$

where α is a differential (k-1)-form of class C^1 , D is a relatively compact open subset of V^k such that ∂D is analytic and ϵ_D^k is a scalar of odd type taking care of the multiplicity of the boundary.

This solves in particular Conjucture 7.2 in [1], and the construction of a boundary kernal function given in [1] is thus valid for complex analytic spaces.

The results of this paper were announced in [2]. Similar results have been announced by M. Herrera in [7].

2. Regular coordinates. Let V_0 be a germ of real analytic subvarieties at 0 in \mathbb{R}^n . We consider \mathbb{R}^n embedded in \mathbb{C}^n as the real subspace with respect to some coordinate system (z_1, \dots, z_n) for \mathbb{C}^n . The germ \tilde{V}_0 of complex analytic varieties at 0 in \mathbb{C}^n defined by the ideal of germs of holomorphic functions vanishing on V_0 is called the complexification of V_0 . We recall here some basic properties of the pair (V_0, \tilde{V}_0) that can be found in section 8 of H. Cartan [4]. We have $\tilde{V}_0 \cap \mathbb{R}^n = V_0$, and by definition

$$\dim V_0 = \dim \widetilde{V}_0.$$

If $V_0 = V_0' \cup \cdots \cup V_0^*$ is the decomposition of V into irreducible branches then $\tilde{V}_0 = \tilde{V}_0^1 \cup \cdots \cup \tilde{V}_0^*$ is the decomposition of \tilde{V}_0 into irreducible branches, and conversely.

A coordinate system (x_1, \dots, x_n) for \mathbb{R}^n is said to be a regular coordinate system for the germ V_0 at 0 if the complexification (z_1, \dots, z_n) of (x_1, \dots, x_n)