On A Formula of Kac and Achiezer

I. I. HIRSCHMAN, JR.*

Communicated by M. Rosenblatt

1. Introduction. Let $\mathbf{c}_a(\xi)$ be a complex measurable function on $-\infty < \xi < \infty$ such that

$$\int_{-\pi}^{r} |\mathbf{c}_a(\xi)|^2 d\xi < \infty,$$

for every r > 0. Let

$$\mathbf{c}(\xi) = \delta(\xi) - \mathbf{c}_a(\xi),$$

where $\delta(\xi)$ is the Dirac delta function and consider the finite section Toeplitz operator with $\mathbf{c}(\xi)$ as kernel which takes $\mathbf{f}(\xi)$ into

(1)
$$\mathbf{c} * \mathbf{f} \cdot (\xi), \quad 0 \leq \xi \leq r.$$

Here $\mathbf{f}(\xi) = \mathbf{f}_s \delta(\xi) + \mathbf{f}_a(\xi)$ where \mathbf{f}_s is a complex constant and $\mathbf{f}_a \in L^1(0, r)$. It follows from the theory of Fredholm integral equations that (1) is invertible if and only if the Fredholm determinant $D(r) \neq 0$ where

$$D(r) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int {\cdot}_0^r \cdot \int \det \left[\mathbf{c}_a(\xi_i - \xi_k) \right] d\xi_1 \cdot \cdot \cdot d\xi_n .$$

We now make the assumptions:

(i)
$$\int_{-\infty}^{\infty} |\mathbf{c}_a(\xi)| d\xi < \infty, \quad \int_{-\infty}^{\infty} |\mathbf{c}_a(\xi)|^2 (1 + |\xi|) d\xi < \infty,$$

(ii)
$$c(t) \neq 0$$
, $-\infty < t < \infty$, $[\arg c(t)]_{-\infty}^{\infty} = 0$.

Here

$$c(t) = \int_{-\infty}^{\infty} \mathbf{c}(\xi)e^{i\xi t} d\xi = 1 - \int_{-\infty}^{\infty} \mathbf{c}_{a}(\xi)e^{i\xi t} d\xi.$$

We further assume the existence of the limits

^{*} Research supported in part by the United States Air Force Office of Scientific Research under contract No. AF-AFOSR 721-65.