On the Loop Spaces of Projective Spaces*

T. GANEA

Communicated by S. S. CHERN

1. Introduction and results. Let \mathfrak{K} denote the field \mathfrak{K} of real numbers, \mathfrak{C} of complex numbers, or \mathfrak{Q} of quaternions, let q=1,2, or 4 be the dimension of \mathfrak{K} over the reals, and let $\mathfrak{K}P^m$ denote the projective m-space over \mathfrak{K} ($m \geq 1$). As is well known (see e.g. [2]), there is a fibration

$$S^{q-1} \stackrel{i}{\to} S^{q(m+1)-1} \stackrel{p}{\to} \Re P^m$$

where S^n is the *n*-sphere. Since q-1 < q(m+1)-1, the inclusion i of the fibre in the total space is nullhomotopic and general results on fibrations (see e.g. [4; Theorem 5.2]) imply that the loop space $\Omega \mathcal{K} P^m$ has the homotopy type of the Cartesian product $S^{a-1} \times \Omega S^{a(m+1)-1}$; this remark was first made by G. W. Whitehead [9] in the case $\mathcal{K} = \mathfrak{C}$. Two H-spaces X and Y with multiplications denoted by the verticals in the diagram

$$(2) \qquad \begin{array}{c} X \times X \xrightarrow{f \times f} Y \times Y \\ \downarrow \qquad \qquad \downarrow \\ X \xrightarrow{f} Y \end{array}$$

have the same H-type if there is a base-point preserving homotopy equivalence f yielding homotopy-commutativity in the diagram; since any homotopy inverse $g:Y\to X$ of f yields homotopy-commutativity in the appropriate diagram, having the same H-type is, indeed, an equivalence relation. Loop spaces are H-spaces under loop multiplication, the spheres S^0 , S^1 , S^3 are topological groups and, hence, H-spaces, and Cartesian products of H-spaces are H-spaces in the obvious way. We shall prove

Theorem 1.1. Let \mathcal{K} denote \mathcal{R} or \mathcal{C} and let q=1 or 2 accordingly; then, $\Omega \mathcal{K}P^m$ has the H-type of $S^{q-1} \times \Omega S^{q(m+1)-1}$ if and only if m is odd and ≥ 3 . $\Omega \mathcal{Q}P^m$ has the H-type of $S^3 \times \Omega S^{4m+3}$ if $m \equiv -1 \pmod{24}$.

Next, let Y be any based topological space and define

nil
$$Y = \sup \min \pi(X, \Omega Y)$$
,

where X ranges over all based topological spaces, $\pi(X, \Omega Y)$ is the group of

^{*} This work was partially supported by NSF GP-3902.