Finite Dimensional Approximations to White Noise and Brownian Motion*

TAKEYUKI HIDA

Communicated by S. Sherman

0. Introduction. In [2], H. Nomoto and the writer constructed a measure space (Ω, \mathbf{B}, P) , which was the projective limit of the measure space $(\Omega_n, \mathbf{B}_n, P_n)$ where Ω_n is obtained by deleting a certain (n-2)-dimensional space from the *n*-sphere S^n in (n+1)-dimensional Euclidean space, \mathbf{B}_n is the family of Borel subsets of Ω_n , and P_n is the restriction to \mathbf{B}_n of the uniform probability measure over S^n . In this paper we shall define a flow $\{T_t\}$ on (Ω, \mathbf{B}, P) as the limit of certain flows $\{T_t^{(2n)}\}$ on $(\Omega_{2n}, \mathbf{B}_{2n}, P_{2n})$, $n \geq 1$, which will turn out to be equivalent to the flow of Brownian motion on (Ω, \mathbf{B}, P) . Each flow $\{T_t^{(2n)}\}$; t realt is in fact a group of rotations on t

Any one-parameter group $\{\tilde{T}_t^{(2n)}\}\$ of rotations on S^{2n-1} can be expressed in suitable orthogonal coordinates in the form

(1)
$$\tilde{T}_{t}^{(2n)} = \begin{bmatrix} A_{1}(t) & 0 \\ & \ddots & \\ 0 & A_{n}(t) \end{bmatrix}, \quad A_{k}(t) = \begin{bmatrix} \cos \lambda_{k} t - \sin \lambda_{k} t \\ \sin \lambda_{k} t & \cos \lambda_{k} t \end{bmatrix}$$

with some real λ_k . We shall consider the particular group for which the $\{\lambda_k\}$ form an arithmetical progression. Then without loss of generality we may assume that

$$\lambda_k = k, \qquad k = 1, 2, \cdots, n.$$

Using this rotation group, we define the flow $T_i^{(2n)}$ on $(\Omega_{2n}, \mathbf{B}_{2n}, P_{2n})$ as follows (for the notations see [2]):

(3)
$$T_{t}^{(2n)}(\omega_{2n}) = \begin{bmatrix} 1 & & & 0 \\ & A_{1}(t) & & & \\ & & A_{2}(t) & & \\ & & & \ddots & \\ 0 & & & & A_{n}(t) \end{bmatrix} \begin{bmatrix} x_{1}^{(2n+1)} \\ x_{2}^{(2n+1)} \\ \vdots \\ x_{2n+1}^{(2n+1)} \end{bmatrix},$$

^{*} Much of this work was done recently at Indiana University, under the support of the ONR.