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Abstract. New independent solutions ¥(r, 6, ¢) of the Laplace equation in
spherical coordinates are found from any given solution ®,(r, 6, ¢) in the following
way. We construct an operator A such that A[A®,(r, 8, ¢)] is a function of the
form G(r)-F(6, ¢); we then let

L ¥(r, 0, ¢) = Ad(r, 0, ) + g(r)-1(8, ),
where f(r) and g(0, ¢) are chosen so that

2. AY¥(r, 0,9) = 0.

This yields g(r) = r~* and inhomogeneous differential equations, which become
after proper transformations, equations of the Poisson and Schrodinger type
for f(6, ¢). Substituting the solutions of these equations into 1. yields the new
independent harmonic functions ¥(r, 6, ¢). These harmonic functions are
important for boundary value problems related to the sphere.

1. Consider the Laplace equation for three dimensions in spherical coordi-
nates (r, 6, ¢):

2
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We define D* to be a three-dimensional region which excludes the origin but
which contains a portion @ of a sphere of radius e with center at the origin,
and such that if a point with coordinates (r, 6, ¢) is in D* then the point (R, 6, ¢)
is also in D*, (Note that Rr = a®.) Furthermore, D* is to have the property
that every ray from the origin which intersects D*, intersects it in a single
line element of length greater than some constant 8. The portion of D* which
belongs to the open ball » < @ will be called D. Furthermore, we let D be an
open subset of » < a containing D — @ (D = closure of D, eic.).
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