Real and Complex Vector Fields on Manifolds

EMERY THOMAS*

Communicated by S. S. CHERN

1. Introduction. This paper continues the study of vector fields on manifolds initiated in [23]. We will consider tangent and normal vector fields as well as complex tangent fields on almost-complex manifolds.

Let ξ be a real vector bundle over a complex X. We define the *span* of ξ to be the maximal number of linearly independent cross-sections in ξ . If X is a smooth manifold M we define span M to be the span of its tangent bundle. Thus span M is the maximal number of linearly independent tangent vector fields on M.

With any such bundle ξ we associate its Stiefel-Whitney classes $w_i \xi \varepsilon H^i(X; \mathbb{Z}_2)$. Recall that ξ is orientable iff $w_1 \xi = 0$ and that ξ is called a *spin* bundle iff $w_1 \xi = w_2 \xi = 0$.

Throughout the paper by a manifold M we will mean a closed connected smooth orientable manifold. We write $w_i M$ for the i^{th} Stiefel-Whitney class of M, and say that M is a spin manifold if $w_2 M = 0$.

We shall prove

Theorem 1.1. Let n be a positive integer with $n \equiv 3 \mod 4$, let M be a spin manifold of dim n, and let ξ be a spin n-plane bundle over M. Then span $\xi \geq 3$ if, and only if,

$$\delta w_{n-3}\xi = 0, \qquad w_{n-1}\xi = 0.$$

Here δ denotes the Bockstein cohomology operator from mod 2 coefficients to integer coefficients.

Recall that Massey [10], [11] and Wu [26] have shown that if M is an n-manifold with $n \equiv 3 \mod 4$, then

$$\delta w_{n-3}M=0, \qquad w_{n-1}M=0.$$

Thus as a consequence of 1.1 we have

Corollary 1.2. If M is a spin manifold with dim $M \equiv 3 \mod 4$, then span $M \geq 3$.

^{*} Research supported by the National Science Foundation and by the Miller Institute for Basic Research.