Ergodic Properties of Expectation Matrices of a Branching Process with Countably Many Types*

SHU-TEH C. MOY

Communicated by G. Birkhoff

I Introduction. Let I be a set of countably many elements and (m_{ij}) , $i, j \in I$ be an infinite matrix with non negative entries m_{ij} . Motivated by applications to branching processes or multiplicative processes we shall call elements of I "types". m_{ij} is the expected number of individuals of type j produced by a single individual of type i. Any non negative matrix may be the expectation matrix of a branching process. Let $(m_{ij}^{(n)})$ be the n^{th} power of (m_{ij}) . Then $m_{ij}^{(n)}$ is the expected number of individuals of type j of the (n + 1)th generation if the first generation is a single individual of type i [10]. The ergodic behavior of $(m_{ij}^{(n)})$ determines the growth of the process. If (m_{ij}) is a finite matrix there is the theory of positive matrices developed by Perron, Frobenius and Markov. The theory furnishes an asymptotic formula for an irreducible, primitive $(m_{ij}): m_{ij}^{(n)} \sim \rho^n v(i) u(j)$ where ρ is the largest positive eigenvalue and v(i), u(i) are the corresponding left and right eigenvectors with the normalization $\sum_{i} v(i)u(i) = 1$. Generalizations of the above theory to various abstract settings are given in [1], [2], [3], [12]. In this paper we shall study an *infinite irreducible* non negative matrix. For a function f defined in I we define Mf and fM by

$$Mf(i) = \sum_{i} m_{ij}f(j), \qquad fM(j) = \sum_{i} f(i)m_{ij}$$

whenever the right sides of the equalities are well defined. Asymptotic properties of $\{M^nf\}$ and $\{fM^n\}$ shall be studied in great detail. Vere-Jones has shown in [16] that there is a unique non negative number r which is the common radius of convergence of power series $\sum m_{ij}^{(n)}s^n$. It will be shown that for all positive numbers $s \leq r$ there are natural Banach spaces of functions on which M acts as an operator and for which $\{M^nf\}$ possesses nice convergence properties. The most interesting ones are for s=r and the case that $\sum m_{ij}^{(n)}r^n=\infty$. There are two strictly positive functions u,v satisfying rMu=u,vrM=v and M

^{*} This work was supported in part by N. S. F. grant GP 5270