Note on a Stability Condition of C. T. Taam

C. E. LANGENHOP

Communicated by G. Birkhoff

In a recent paper C. T. Taam [1] considered the equation

(1)
$$\frac{dX}{dt} + UX = F(t, X, \lambda),$$

where t is real, X and F take values in a Banach space B with norm $||\cdot||$, and U is a bounded linear operator in B such that for some $\alpha > 0$, $\beta > 0$ the operator exp (Ut) satisfies the condition $||\exp(Ut)|| \leq \beta e^{\alpha t}$ for $t \leq 0$. Regarding F it was assumed, inter alia, that for fixed $\rho \geq 0$ and fixed λ (in some parameter set), if $||X|| \leq \rho$ and $||Y|| \leq \rho$, then

$$||F(t, X, \lambda) - F(t, Y, \lambda)|| \leq \theta(t, \rho, \lambda) ||X - Y||$$

for almost all $t \in R$ (the reals) where θ is a real-valued function of a certain type. Since we shall not be concerned directly with the dependence of θ on ρ and λ we shall henceforth merely write $\theta(t)$. Regarding θ , we make the following assumptions (essentially those imposed by Taam):

 θ is non-negative and measurable. Also there exists a real number M (I) such that for all $t \in R$, $\int_{t}^{t+1} \theta(s) ds \leq M$.

Using the contraction mapping principle, Taam showed that if

(2)
$$\sup_{t \in \mathbb{R}} \beta \int_{-\infty}^{0} e^{\alpha s} \theta(t+s) \, ds < r < 1$$

and

$$\sup_{t \in \mathbb{R}} \left| \left| \int_{-\infty}^{0} \exp \left(U s \right) F(t+s,0,\lambda) \, ds \right| \right| < \rho(1-r)/2,$$

then (1) has a solution X such that $||X(t)|| \leq \rho$ for all t. Assuming also that

(3)
$$\limsup_{t \to +\infty} \frac{1}{t} \int_0^t \theta(s) \, ds < \frac{\alpha}{\beta},$$

he showed that this solution X was exponentially asymptotically stable.

Here we show that condition (3) is in fact implied by condition (2). Indeed, we prove slightly more: