Classification of Space-Time Curvature Tensor IV.

General Theory of Metric Classification*

VÁCLAV HLAVATÝ

1. The problem to be solved. There are two tensors in the relativistic spacetime V_4 which are corner stones for the classification of the curvature tensor $R_{\omega\mu\lambda\tau}$. One is a tensor, say $e_{\omega\mu\lambda\tau}$, proportional to the Levi-Civita tensor, the other is

$$g_{\omega\mu\lambda\nu}\stackrel{\mathrm{def}}{=} g_{[\omega[\lambda}g_{\mu]\nu]}$$

where $g_{\mu\lambda}$ is the metric tensor of V_4 (its signature is supposed to be (+++-)). In [3] R. S. Mishra and the author based their investigation on $g_{\omega\mu\lambda}$, and found a complex frame in which the matrix of the components of the curvature tensor is

(1.1)
$$\begin{bmatrix} \varphi & f \\ \bar{f} & \bar{\varphi} \end{bmatrix} \operatorname{Trace} \varphi = \operatorname{Trace} \bar{\varphi},$$

where φ , f are 3 × 3 matrices, \bar{f} , $\bar{\varphi}$ are their complex conjugate and f is Hermitian symmetric. Because for Einstein space f=0 the matrix (1.1) is particularly handy for the Petrov classification [2] of Einstein spaces. (See section 11 in [3], where there are also some bibliographic data pertaining to the investigation of the curvature tensor.) The same authors displayed in [4] the general theory of classification with respect to the tensor $h_{\omega\mu\lambda}$, which is either $e_{\omega\mu\lambda}$, or $g_{\omega\mu\lambda}$. Finally in [5] these authors applied this theory to the case $h_{\omega\mu\lambda}$, = $e_{\omega\mu\lambda}$, (the projective classification) and displayed all 87 general cases. In [6], [7] Hlavatý refined the concept of equivalence classes and this enabled him to find the cases disregarded in [5] (the arithmetic change, the geometric change).

When it comes to apply the theory displayed in [4] to the case $h_{\omega\mu\lambda\tau} = g_{\omega\mu\lambda\tau}$ (the metric classification) one encounters almost insurmountable difficulties due to the fact that the basic orthogonal group preserves orthogonal components of both tensors $g_{\omega\mu\lambda\tau}$ as well as $e_{\omega\mu\lambda\tau}$. Hence we must distinguish between null

^{*} This paper was prepared with the support of the Aerospace Research Laboratory of the Office of Aerospace Research USAF.