## Local Cn-operational Calculus

## SHMUEL KANTOROVITZ\*

Communicated by J. Schwartz

1. Let X be a Banach space, and let W be a linear manifold in X. Denote by 5(W) the algebra of all linear transformations of X with domain W and range contained in W. For a compact interval  $\triangle$ , let  $C^n(\triangle)$  be the Banach algebra of all complex valued functions of class  $C^n$  on  $\triangle$   $(n = 0, 1, 2, \cdots)$  with the norm

$$|f|_{n,\Delta} = \sum_{j=0}^{n} \sup_{\Delta} |f^{(j)}|/j!.$$

We consider an operator (= a bounded everywhere defined linear transformation of X) T with real spectrum  $\sigma(T)$ , and we fix throughout a compact interval  $\Delta = [a, b]$  which contains  $\sigma(T)$  in its interior. If n is a non-negative integer and W is an invariant linear manifold for T, a  $C^n$ -operational calculus for T on W is an algebra homomorphism  $f \to T(f)$  of  $C^n(\Delta)$  into  $\mathfrak{I}(W)$  with the following properties:

- (i)  $T(f) = I \mid W \text{ for } f(t) \equiv 1;$
- (ii)  $T(f) = T \mid W \text{ for } f(t) \equiv t; \text{ and }$
- (iii) for each  $x \in W$ , the mapping  $f \to T(f)x$  of  $C^n(\Delta)$  into X is continuous. In (i) and (ii), I stands for the identity operator and  $T \mid W$  is the restriction

of T to W. Let  $\mathfrak B$  denote the Borel field of the real line R. If  $W \subset X$  is a linear manifold, a generalized spectral measure on W is a mapping  $E(\cdot): \mathfrak B \to \mathfrak I(W)$  with the following properties:

- 1.  $E(\mathbf{R}) = I \mid W$ , and
- 2. for each  $x \in W$ ,  $E(\cdot)x$  is a regular strongly countably additive vector measure on  $\mathfrak{B}(cf. [3])$ .

Note that, for each  $x \in W$ ,  $E(\cdot)x$  is necessarily bounded (cf. [1; III. 4.5]). Let P denote the algebra of all polynomial functions on  $\triangle$ . For  $n = 0, 1, \dots$ , we write

$$|x|_n = \sup \{|p(T)x|; p \in P, |p|_{n,\triangle} \le 1\}, \quad x \in X,$$

<sup>\*</sup> Research supported by U. S. Army Research Office, Durham.