Limit Theorems for the Split Times of Branching Processes*

KRISHNA B. ATHREYA & SAMUEL KARLIN

0. Introduction. Consider a continuous time one dimensional strong Markov branching process $\{X(t); t \geq 0\}$ with the non-negative integers as state space defined on a probability space $(\Omega, \mathfrak{F}, P)$ and standardized to have right continuous sample paths. Let the associated infinitesimal generating function be u(z) = a[h(z) - z] where

$$h(z) = \sum_{i=0}^{\infty} p_i z^i, \quad p_i \ge 0, i = 0, 1, \dots, \sum_{i=0}^{\infty} p_i = 1$$

and $0 < a < \infty$. As usual, we assume henceforth that $h'(1) < \infty$.

It is very suggestive to regard X(t) as the total number of particles at time t in a system where we start with X(0) particles at t=0, each particle lives an exponential length of time with mean a^{-1} and on death creates (or splits into) a random number of new particles whose generating function is h(z), and all particles behave independently of each other and identically. The value h'(1) is then the expected number at each split. A full discussion of definitions and elementary properties of continuous time Markov branching processes is given in [5, Chap. 5], see also [6, Chap. 11].

We will assume henceforth unless stated explicitly to the contrary that $p_0 = 0$ so that extinction of the population is impossible. Because of the Markov property we assume without loss of generality that $p_1 = 0$ as this just amounts to ignoring the case where an individual replicates himself at a split.

It is well known that $\{X(t)e^{-\lambda t}; t \ge 0\}$ $(\lambda = u'(1))$ is a non-negative martingale with respect to the family of σ fields $\mathfrak{F}(t) = \sigma\{X(s, \omega); s \le t\}$ and hence

(1)
$$\lim_{t\to\infty} X(t,\omega)e^{-\lambda t} = W(\omega)$$
 exists with probability one (w.p.1)

and by Fatou's lemma (E denotes the expectation operation)

$$EW(\omega) \leq \lim_{t\to\infty} E(X(t,\omega)e^{-\lambda t}) = X(0).$$

(Frequently, as customary, we suppress the ω variable.)

^{*} Research supported in part under contracts NONR 225(28) and NIH USPHS 10452 at Stanford University.