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1. Introduction. For the introduction we shall assume that the spaces under
consideration are connected and have base points, and that all maps and homo-
topies preserve base points. [X, B] denotes the set of homotopy classes [f] of
maps f : X — B; the associated set-valued functor is denoted by [ , B]. Let
W be the category of finite CW complexes and maps.

Let f and g be maps from a space X to Y. Recall that f and ¢ are said to be
weakly homotopicif f, = g,:[K, X]— [K, Y]for every K ¢ W. (Here, f,[¢] = [fol,
[¢] € [K, X].) If in the definition of ‘“‘H-space” we replace the term ‘“homotopy’’
by ‘“weak homotopy”’, we then get the definition of a weak H-space. One similarly
defines the notion of weak homotopy associativity, etc., of a multiplication u:
X X X — Xon X. If X and Y are spaces with multiplications u and » respec-
tively, a map f: X — Y is called a weak homomorphism if fu is weakly homotopic
to v(f X ).

A multiplication ¢ on B induces a multiplication (written additively) on
each [X, B] by [f] + [g] = [u(f, g)] where (f, g): X — B X B is defined by
(f, 9) (@) = (f(z), g(x)). If {: B— B’ is a weak homomorphism, then f,: [X, B] —
[X, B’], X £ W, is a homomorphism.

Milnor has developed in [5] the theory of PL-microbundles. In particular,
he has defined k. (X) as the set of stable equivalence classes of PL-microbundles
over X. Whitney sum immediately makes kpz (X) an abelian monoid (it’s really
a group but this requires proof).

Our main result is the following,.

(1.1) Theorem. The functor kpy, is representable on W in the sense that there
exists a countable CW complex Bpy, such that kpy, is naturally equivalent to [ , Bpy).
Addition on kpy, 1s represented by a weakly homotopy commutative and weakly
homotopy associative H-space structure ppr on Bpr . Moreover, (Bpr , ppr) 18
unique in the sense that if (B, u) is another H-space representing kpy on W then
there exists a weak homomorphism Bp, — B which is a weak homotopy equivalence.
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