The Modulus of a Plane Condenser*

THOMAS BAGBY**

Communicated by F. W. Gehring

1. Introduction. This paper is a study of the logarithmic capacity and modulus of a plane condenser. In this study a *condenser* is defined as a triple (R, A, B), where R is a connected open set of the extended plane P, whose complement $\sim R$ is the union of nonempty disjoint compacta A and B; if A and B are connected, the condenser is called a *ring*. If R is contained in the finite plane C, the *capacity* of the condenser (R, A, B) may be defined as

(1)
$$\operatorname{cap} R = \inf_{u} \iint_{\mathbb{R}} |\nabla u(x)|^2 dx^1 dx^2,$$

where x^i denotes the *i*th coordinate of the point x (no complex multiplication is used in this paper), and the infimum is taken over all continuously differentiable functions u in R with boundary values 0 at A and 1 at B; the capacity of an arbitrary condenser may be defined by means of an auxiliary Möbius transformation. The *modulus* of the condenser is

$$\mod R = \frac{2\pi}{\operatorname{cap} R} ,$$

the constant in the numerator being chosen so that the modulus of the annular ring $\{x: r_1 < |x| < r_2\}$ is equal to $\log (r_2/r_1)$.

Our fundamental theorem is a representation for the modulus of a condenser as an "average" of absolute ratios. If x_1 , x_2 , x_3 , x_4 form an ordered quadruple of points in P, with $x_2 \neq x_4$, and f is a Möbius transformation such that $f(x_2) = 0$ and $f(x_4) = \infty$, the absolute ratio $|x_1|$, $x_2|$, $x_3|$, $x_4|$ is defined by

$$|x_1, x_2, x_3, x_4| = \begin{cases} 1 & \text{if } f(x_1) = f(x_3), \\ |f(x_1)|/|f(x_3)| & \text{if } f(x_1) \neq f(x_3). \end{cases}$$

Then the fundamental theorem is given by the formula

(2)
$$\mod R = \inf_{\sigma} \int_{B} \int_{A} \int_{A} \log |a_{1}|, b_{2}|, b_{1}|, a_{2}| d\sigma(a_{1}) d\sigma(a_{2}) d\sigma(b_{1}) d\sigma(b_{2}),$$

^{*} This paper represents part of the author's doctoral dissertation (Harvard, 1966).

^{**} Supported in part by National Science Foundation grant NSF-GP5803.