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1. Introduction. This paper is a study of the logarithmic capacity and
modulus of a plane condenser. In this study a condenser is defined as a triple
(R, A, B), where R is a connected open set of the extended plane P, whose
complement ~R is the union of nonempty disjoint compacta A and B; if A
and B are connected, the condenser is called a ring. If R is contained in the
finite plane C, the capacity of the condenser (R, 4, B) may be defined as
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where z° denotes the ith coordinate of the point x (no complex multiplication
is used in this paper), and the infimum is taken over all continuously different-
iable functions « in R with boundary values 0 at A and 1 at B; the capacity
of an arbitrary condenser may be defined by means of an auxiliary Mébius
transformation. The modulus of the condenser is
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the constant in the numerator being chosen so that the modulus of the annular
ring {z : 7, < |z| < 72} is equal to log (ry/7y).

Our fundamental theorem is a representation for the modulus of a condenser
as an “average’’ of absolute ratios. If z, , 2, , 3 , 2, form an ordered quadruple
of points in P, with z, # z,, and f is a Mobius transformation such that f(z,) = 0
and f(z,) = o, the absolute ratio |z, , x; , 25 , z.| is defined by
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Then the fundamental theorem is given by the formula
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