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1. Statement of conjecture. In his classic paper [7] on generalized harmonic
analysis, Wiener extended the notion of energy spectrum to a wide class of
random functions. Typical physical examples of these are the outputs from filters
having ‘“‘white noise” (Brownian motion) inputs. Wiener defined the autocor-
relation function of a sample function f(x) = f(z, »)) as the function
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If this function exists and is in L, M L, , then the Fourier transform
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is nonnegative by a well-known result of Bochner. This fact and consideration
of the sample function f(x) = ce'™ led Wiener to suggest that R(g, f) should
be interpreted as the mean squared amplitude of the Fourier component with
wave-number g. That is, one should think of R(g, f) as the mean power density
of f (per unit wave-number) at the wave-number g.

Wiener justified these ideas rigorously by showing, for a given continuous
power density E(g), how to construct normal homogeneous random functions
(N.H.R.F.) f(z, w) and an associated probability measure ur on an abstract
sample space, such that R(g, ) as defined by (1)-(2) exists and equals E(q)
with u,-probability one. In physical language, ‘“time averages of sample func-
tions are ensemble averages with probability one’’: metric transitivity.

Wiener went further: he showed how to write almost every sample function
f(x, w) as a symbolic Fourier-Stieltjes transform
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Namely, he defined F(g, ) up to an additive constant for almost every sample
function by the formula
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