Collectively Compact and Totally Bounded Sets of Linear Operators

P. M. ANSELONE

Communicated by E. Hopf

1. Introduction. Let X and Y be real or complex normed linear spaces and [X, Y] the space of bounded linear operators on X into Y with the operator norm topology. A set $\mathcal{K} \subset [X, Y]$ is collectively compact iff the set $\{Kx : K \in \mathcal{K}, ||x|| \leq 1\}$ has compact closure (hence, is totally bounded).

Collectively compact sets of operators were introduced in [1] in connection with the approximate solution of integral equations. Their general properties are studied in [2], which also contains an up-to-date bibliography on the subject. A related paper [3] concerns operators T and T_n , $n=1,2,\cdots$, such that $T_n \to T$ strongly and $\{T_n - T : n \ge 1\}$ is collectively compact. It was shown that such operators have many of the properties of those for which $||T_n - T|| \to 0$.

Since the analysis simplifies in the latter case, it is important to determine when $T_n \to T$ strongly but $||T_n - T|| \to 0$. It is easy to prove that $||T_n - T|| \to 0$ iff $T_n \to T$ strongly and $\{T_n - T : n \ge 1\}$ is totally bounded in the topology of [X, Y]. Thus, we are led to compare collectively compact and totally bounded sets in [X, Y].

The following results were obtained in [2]. Every compact set of compact operators in [X, Y] is collectively compact. For Y complete, every totally bounded set of compact operators in [X, Y] is collectively compact. For Y = X, a Hilbert space, a set \mathcal{K} of compact operators in [X, X] is totally bounded iff both \mathcal{K} and $\mathcal{K}^* = \{K^* : K \in \mathcal{K}\}$ are collectively compact.

Conjecture. For arbitrary normed linear spaces X and Y, if $\mathfrak{K} \subset [X, Y]$ and $\mathfrak{K}^* \subset [Y^*, X^*]$ are collectively compact, then \mathfrak{K} is totally bounded.

(Since $||K^*|| = ||K||$, \mathcal{K} is totally bounded iff \mathcal{K}^* is totally bounded.)

The conjecture is proved in this paper for sets of operators such that $\dim KX \leq n$ for all $K \in \mathcal{K}$ $(n = 1, 2, \cdots)$ and for certain limits of such sets. A related paper [4] will use these results together with spectral theory to establish the conjecture in more general cases.

Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No.: DA-31-124-ARO-D-462.