On Local Spline Approximation by Moments

CARL DE BOOR*

Communicated by: Garrett Birkhoff

- 1. This note is intended to generalize the statements of [1]. Incidentally it should justify some of the steps taken in [1].
- 2. Let m be a positive integer, $\pi:0=x_0< x_1< \cdots < x_n=1$ a partition of the unit interval, and denote by $S=S_{\pi}$ the set of spline functions on [0,1] of degree 2m-1 with (interior) joints x_1 , \cdots , x_{n-1} . We wish to investigate the behavior of

(1)
$$\operatorname{dist}(f, S) = \min_{s \in S} ||f - s||_{\infty},$$

for $f \in C[0, 1]$, as the mesh of π , $|\pi| = \max_i |x_{i+1} - x_i|$, goes to zero. As is pointed out in [1],

(2)
$$\operatorname{dist}(f, S_{\pi}) = O(|\pi|^{k})$$

will not hold for k > 2m, except for the trivial case that f is a polynomial of degree $\leq 2m - 1$. It is further stated there that if $f \in C^{2m}[0, 1]$ and if the numbers

(3)
$$M_{\pi} = \max_{|i-j|=1} (x_{i+1} - x_i)/(x_{i+1} - x_i)$$

stay bounded, then there exists K independent of f or π and $s_{\pi} \in S_{\pi}$ s.t.

$$|f(x) \, - \, s_\pi(x)| \, \leqq \, K \, |\pi|^{2m} \, ||f^{(2m)}||_\infty \, , \quad \text{all} \quad x \, \epsilon \, [x_m \, , \, x_{n-m}].$$

It is one result of this note that in fact

(4)
$$\operatorname{dist} (f, S_{\pi}) = O(|\pi|^{2m}),$$

for $f \in C^{2m}[0,\ 1],$ and that (4) holds even without the assumption of bounded mesh ratios M_π .

The argument in [1] relies on a linear approximation scheme, called local spline approximation by moments, which realizes the convergence rate $O(|\pi|^{2m})$. Briefly, the approximation $P_{\pi}f$ to f is defined by

(5)
$$(P_{\pi}f)(x) = p(x) + \sum_{i} G(x, x_{i}) \int_{0}^{1} W_{i}(t) f^{(2m)}(t) dt.$$

^{*} This work was supported by the National Science Foundation under grant GP-07163.