Asymptotic Results for a Class of Integral Operators Over Groups

WILLIAM R. EMERSON

Communicated by: M. Rosenblatt

0. Introduction and notation. Let Γ be a locally compact topological group and let $| \cdot |$ be a fixed left invariant Haar measure on Γ . Then if F is a suitably restricted measurable function on Γ and V is a Borel set of Γ of finite non-zero measure, we define the Finite Toeplitz Operator F_V on $L^2(V)$ by

$$(F_{\nu}\varphi)(\gamma) = \int_{\nu} F(\tau^{-1}\gamma)\varphi(\tau) d\tau$$

Furthermore, we define W_{Γ} to be the set of all sequences $\{V_n\}$ of Borel sets of Γ of finite non-zero measure satisfying

$$\lim_{n\to\infty}\frac{|\gamma V_n\,\Delta V_n|}{|V_n|}=0\quad\text{for all}\quad\gamma\,\epsilon\,\Gamma.$$

The prototype of the asymptotic theorems we obtain is the following: Let Γ be Abelian with dual group $G = \hat{\Gamma}$, $F \in L^1(\Gamma) \cap A(\Gamma)$ and Hermitian $(F(-x) = \overline{F(x)})$, $\{V_n\} \in W_{\Gamma}$, and let $\{\lambda_{nj}\}$ denote the sequence of eigenvalues of F_{V_n} . Then if $F = \hat{f}$ where $f \in L^1(G)$ and Haar measures are normalized on Γ and G by Fourier Inversion,

(*)
$$\lim_{n\to+\infty} \frac{\text{number of } \lambda_{nj} \, \varepsilon \, [a, \, b]}{|V_n|} = |\{x \, \varepsilon \, G : a \leq f(x) \leq b\}|,$$

if $0 \notin [a, b]$ and $|\{x \in G : f(x) = a \text{ or } f(x) = b\}| = 0$. This generalizes the classical result of Szego ([1]) as well as the results of Krieger ([2]) which treat the case of compactly generated Abelian Γ . Conversely, if $\{V_n\}$ is a sequence of Borel sets of Γ of finite non-zero measure for which (*) holds for all such F we then show that $\{V_n\} \in W_{\Gamma}$.

This asymptotic distribution theorem (*) is derived from an asymptotic formula for the distribution of the eigenvalues of Finite Toeplitz Operators in general *unimodular* groups; in the Abelian case the result takes a particularly nice form due to the availability of dual groups.

We then extend our considerations to more general operators over Abelian