Spectral Properties of Collectively Compact Sets of Linear Operators*

P. M. ANSELONE & T. W. PALMER

Communicated by E. Hopf

1. Introduction. Let X be a real or complex normed linear space, [X] the space of bounded linear operators from X into X, and $\mathfrak{G} = \{x \in X : ||x|| \leq 1\}$. A set $\mathfrak{K} \subseteq [X]$ is collectively compact iff the set

$$\mathfrak{K}\mathfrak{B} = \{Kx : K \in \mathcal{K}, x \in \mathfrak{B}\}\$$

has compact closure.

Collectively compact sets of operators have been studied in connection with the approximate solution of integral equations [2, Bibilography]. A detailed theory, which covers several such applications, relates the spectral properties of an operator T to those of operators T_n in a sequence converging strongly to T and having $\{T_n - T : n = 1, 2, \dots\}$ collectively compact [3].

The relationship between collective compactness and total boundedness is of particular interest since a sequence $\{T_n\}$, satisfying the hypotheses of [3] stated above, converges to T in norm iff the set of differences $\{T_n - T\}$ is totally bounded. If X is complete it is shown in [2] that any totally bounded set of compact operators is collectively compact. As a partial converse it is also shown that a collectively compact set of normal operators in Hilbert space is totally bounded. From this it follows that a collectively compact set \mathcal{K} of operators in a complex Hilbert space is totally bounded iff the set $\mathcal{K}^* = \{K^*: K \in \mathcal{K}\}$ is collectively compact. This last result has been generalized to the case of an arbitrary Banach space in [1] with the restriction that $\{\dim KX: K \in \mathcal{K}\}$ should be bounded. In [7] this restriction is removed.

After the introduction of necessary notation in Section 2, it is shown in Section 3 that several spectral properties of individual compact operators hold uniformly for all operators in a collectively compact set. These results are used in Section 4 to prove that a set of normal operators on a complex Banach space with a uniformly smooth unit ball is a totally bounded set of compact operators iff it is collectively compact.

^{*} Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.